Третья национальная научная конференция с международным участием «Математическое моделирование в экологии»

Фитопланктон в море. Модельный анализ и оценки

Абакумов А.И. Институт автоматики и процессов управления ДВО РАН

Замкнутые модели минерального питания

Базовая модель

$$\begin{cases} \dot{y}_{i} = \mu_{i}(z)y_{i} - e_{i}(y_{i})y_{i} \\ \dot{z} = \rho(s) - \sum_{i=1}^{n} \mu_{i}(z)y_{i} \end{cases}$$
(1)
$$\dot{s} = \sum_{i=1}^{n} e_{i}(y_{i})y_{i} - \rho(s)$$

$$\mu_i(z) = \mu_i^{(0)} \frac{z}{k_i + z}$$

Модели с внутриклеточным содержанием веществ

$$\begin{cases} \dot{y}_{i} = \mu_{i}(q_{i}) \cdot y_{i} - e_{i}(y_{i})y_{i} \\ \dot{z}_{j} = \rho_{j}(s_{j}) - \sum_{i=1}^{m} v_{ij}(z_{j}, q_{ij})y_{i} \\ \dot{s}_{j} = \sum_{i=1}^{m} e_{i}(y_{i})q_{ij}y_{i} - \rho_{j}(s_{j}) \\ \dot{q}_{ij} = v_{ij}(z_{j}, q_{ij}) - \mu_{i}(q_{i}) \cdot q_{ij} \end{cases}$$

$$(2)$$

$$\mu_{i}(q_{i}) = \min_{j} \mu_{ij}(q_{ij})$$

$$\dot{q}_{ij} = v_{ij}(z_{j}, q_{ij}) - \mu_{i}(q_{i}) \cdot q_{ij}$$

Модель Друпа	Модель со стехиометрией		
$\overline{V}_{ij}(q_{ij}) = V_{ij}^{(0)} \frac{\overline{q}_{ij} - q_{ij}}{\overline{q}_{ij} - \underline{q}_{ij}}$	$\overline{V}_{ij}(q_j) = v_i^{(0)} \frac{s_j}{q_{ij}} q_i \frac{(\overline{q}_i - q_i)}{\overline{q}_i - \underline{q}_i}$		
	$q_i = \sum_{j=1}^n q_{ij}$ $\overline{q}_i = \sum_{j=1}^n \overline{q}_{ij}$ $\underline{q}_i = \sum_{j=1}^n \underline{q}_{ij}$		
$\mu_{ij}(q_{ij}) = \mu_{ij}^{(0)} \frac{q_{ij} - \underline{q}_{ij}}{q_{ij}}$	$\mu_{ij}(q_{ij}) = \mu_{ij}^{(0)} rac{q_{ij}}{q_{ij}^{(0)} + q_{ij}}$		

$$e_i(y) = e_i^{(0)} + e_i^{(1)}(y_i)$$

Равновесные решения в модели (1)

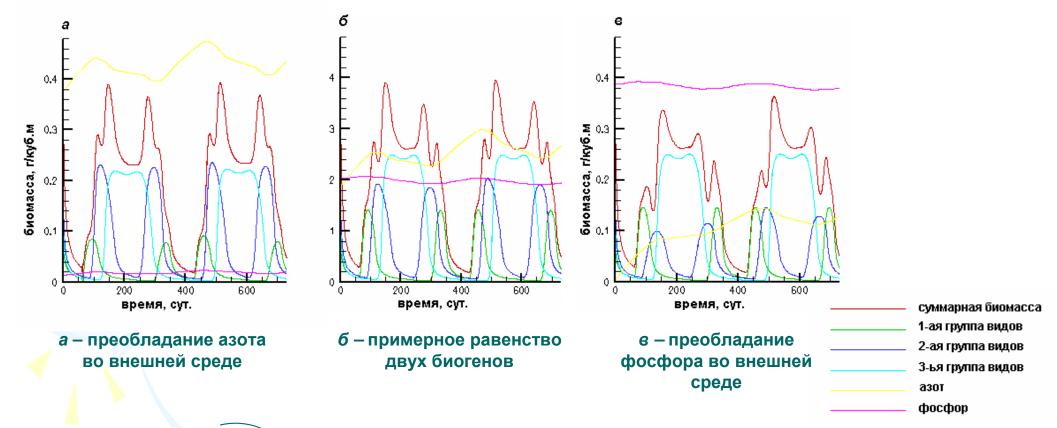
Пусть функции μ_i, e_i, ρ в модели (1) строго возрастают на множествах неотрицательных значений своих аргументов.

Тогда модель (1) имеет непустое множество положительных равновесных локально устойчивых решений, определяемых системой

$$\begin{cases} z + \sum_{i=1}^{m} y_i + s = c \\ \mu_i(z) - e_i(y_i) = 0 \\ \sum_{i=1}^{m} e_i(y_i) y_i - r(s) = 0 \end{cases}$$

координаты равновесий являются функциями положительного параметра $^{\it c}$. Если начальное состояние системы близко к локально устойчивому равновесию и они имеют общее значение параметра $^{\it c}$, то решение асимптотически притягивается к этому равновесию.

Равновесные решения в модели (2)

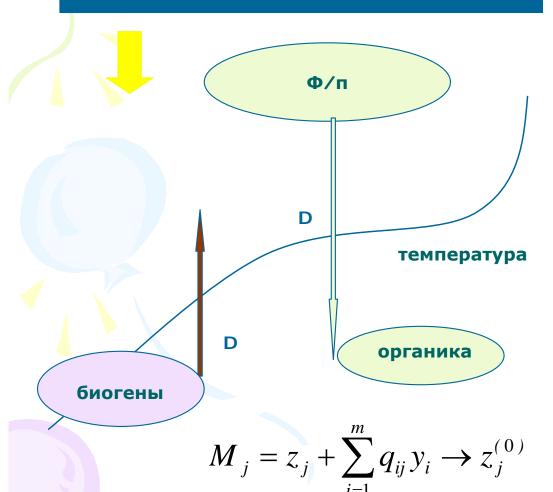

Пусть функции μ_{ij}, e_i, r_i в модели (2) строго возрастают по своим аргументам, а функции ν_{ij} строго возрастают по z_j и строго убывают по q_{ij} .

Тогда модель (2) имеет непустое множество положительных равновесных решений, определяемых системой

$$\begin{cases} z_{j} + \sum_{i=1}^{m} q_{ij} y_{i} + s_{j} = c_{j} \\ \mu_{i}(q_{i}) - e_{i}(y_{i}) = 0 \\ \sum_{i=1}^{m} e_{i}(y_{i}) q_{ij} y_{i} - \rho_{j}(s_{j}) = 0 \\ v_{ij}(z_{j}, q_{ij}) - \mu_{i}(q_{i}) \cdot q_{ij} = 0 \end{cases}$$

координаты равновесий являются функциями вектора $c = (c_1,...,c_n)$ положительных параметров .

Динамика биомасс трех групп фитопланктонных организмов (модель Друпа)



Абакумов А.И., Пак С.Я., Симонов А.С. Модель минерального питания фитопланктона // Информатика и системы управления, 2011, № 1 (27), с. 17 - 26.

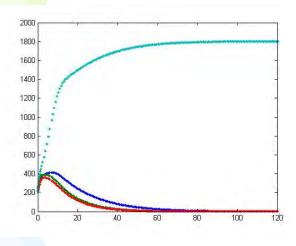
Моделирование фитопланктона

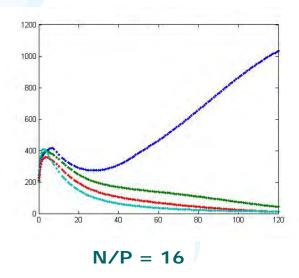
$$\begin{cases} \dot{y}_{i} = [\mu_{i}(q_{i}) - D] y_{i} \\ \dot{z}_{j} = D(z_{j}^{(0)} - z_{j}) - \sum_{i=1}^{m} v_{ij}(z_{j}, q_{ij}) y_{i} \\ \dot{q}_{ij} = v_{ij}(z_{j}, q_{ij}) - \mu_{i}(q_{i}) \cdot q_{ij} \end{cases}$$

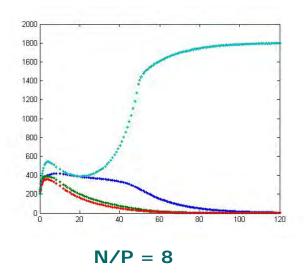
$$\mu_{ij}(q) = \mu_{ij}^{(0)} (1 - \frac{q_{ij}}{q_{ij}})$$

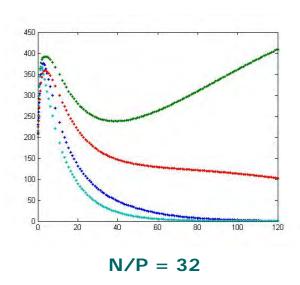
$$v_{ij}(z_j, q_{ij}) = v_{ij}^{(0)} \frac{z_j}{k_{ij} + z_j} \cdot \left[\frac{\overline{q}_{ij} - q_{ij}}{\overline{q}_{ij} - \underline{q}_{ij}} \right]$$

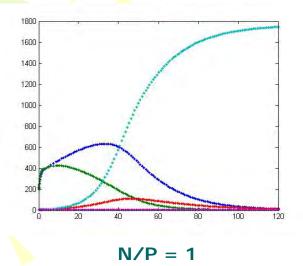
$$\mu_j(q_j) = \min_i \mu_{ij}(q_{ij})$$

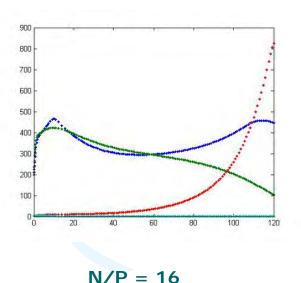

Silkin V.A., Abakumov A.I., Pautova L.A., Mikaelyan A.S., Chasovnikov V.K., Lukashova T.A. Co-existence of non-native and the Black sea phytoplankton species. Invasion hypotheses discussion // Russian Journal of Biological Invasions. 2011, v. 2, n. 4, p. 256–264.

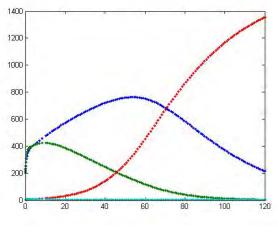

Структура данных об основных видах


Коэффициент	Размерность	Emiliania huxleyi	Pseudo- nitzschia pseudo- delicatis- sima	Proboscia alata	Chaetoceros curvisetus
μ _{max} N	1/сут	1.92	2.70	1.44	3.75
μ_{max} P	1/сут	1.55	1.84	1.22	2.56
υ ^m N	мкмN/(сут∙мг сырой биомассы)	0.0379	0.0771	0.1200	0.0714
υ ^m P	мкмР/(сут·мг сырой биомассы)	0.1452	0.5806	0.5420	0.6450
K _N	мкм/л	0.1000	0.7143	1.4286	0.0714
K _P	мкм/л	1.1613	0.5161	0.8710	0.9677
q_N	мкмN/(мг сырой биомассы)	0.2143	0.2143	0.2143	0.2143
$q_{\scriptscriptstyle P}$	мкмР/(мг сырой биомассы)	0.00645	0.00645	0.00645	0.00645

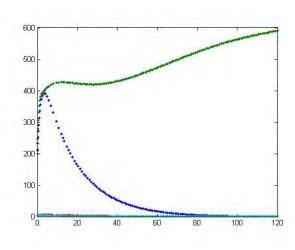

Динамика биомасс в весенний период






Динамика концентраций: Emiliania h. – синий, Pseudonitzshia – зеленый, Chaet. trondsenii – красный, Chaet. minimus –сиреневый. По горизонтальной оси – время в сутках, по вертикальной – концентрации в мг/м3. Концентрация азота во входящем потоке - N=0.429 мкмоль/л. Начальные биомассы – по 200 мг/м3.

Инвазии


Коэффициент	Размерность	Emiliania huxleyi	Pseudo- nitzschia pseudo- delicatis- sima	Chaetocero s trondsenii	Chaetocer os minimus
μ_{max} N	1/сут	1.92	2.70	1.80	2.25
μ_{max} P	1/сут	1.55	1.84	1.55	2.60
υ ^m N	мкмN/(сут∙мг сырой биомассы)	0.0379	0.0771	0.0714	0.0714
υ ^m P	мкмР/(сут∙мг сырой биомассы)	0.1452	0.5807	0.1161	0.0645
KN	мкм/л	0.1000	0.7143	0.1429	0.0714
KP	мкм/л	1.1614	0.5162	0.6452	1.4517
q_N	мкмN/(мг сырой биомассы)	0.2143	0.2143	0.2143	0.2143
q_P	мкмР/(мг сырой биомассы)	0.00645	0.00645	0.00645	0.00710

N/P = 32

Динамика концентраций: Emiliania h. — синий, Pseudonitzshia — зеленый, Chaet. trondsenii — красный, Chaet. minimus —сиреневый. По горизонтальной оси — время в сутках, по вертикальной — концентрации в мг/м3. Концентрация азота во входящем потоке - N=0.429 мкм/л. Начальные биомассы — Emiliania h., Pseudonitzshia — 200 мг/м3, Chaet. trondsenii, Chaet. minimus — 2.5 мг/м3.

Поиск равновесных решений

Определим матрицу $\overline{Z}=(\overline{z}_{ij})_{i,j=1}^{m,n}$ из условия $\overline{z}_{ij}=\widetilde{\mu}_{ij}^{-1}(D)$. Здесь

 $\ddot{\mu}_{ij}(z_j) = \mu_{ij}(\widetilde{q}_{ij}(z_j))$, $\widetilde{q}_{ij}(z_j)$ определяется из условия $v_{ij}(z_j,q_{ij}) - D \cdot q_{ij} = 0$.

Это означает, что $\bar{z}_{ij} \ge 0$ - кандидат в равновесные значения при $y_i^* > 0$

Для равновесия (y^*,z^*) выполняются следующие свойства (**).

(1*) Если $y_i^* > 0$, то $\forall j \ z_j^* \geq \overline{z}_{ij}, \ \exists j_0 \ z_{j_0}^* = \overline{z}_{ij_0}$.

Такой вид i назовем доминирующим, а вещество j_0 - лимитирующим.

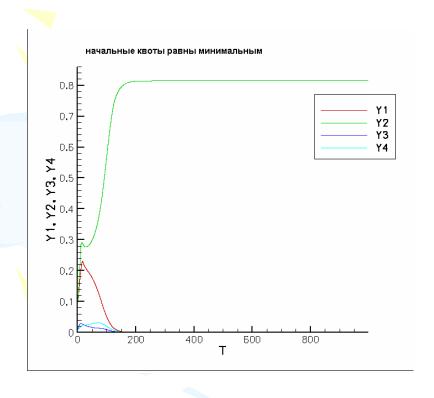
(2*) Если $\exists j \ z_j^* < \overline{z}_{ij}$, то $y_i^* = 0$. Такой вид i назовем <u>элиминированным</u>.

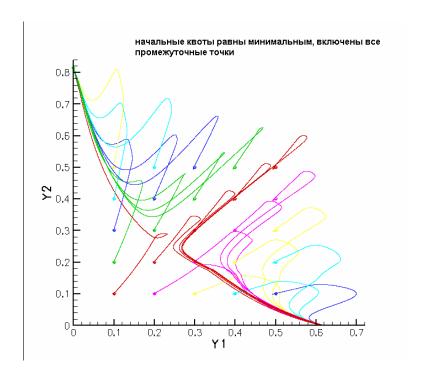
(3*) Если $\forall j \; z_{j}^{*} > \overline{z}_{ij}$, то $y_{i}^{*} = 0$. Такой вид i назовем <u>свободным</u>.

При построении способа поиска равновесных решений опираемся на свойства (*), используем матрицу \overline{Z} . Для каждого множества $I_*,I_*\subset I$ определяем отображение $\phi\colon I_*\to J$, удовлетворяющее для каждого $i\in I_*$ и для $j=\phi(i)$ условиям $\overline{z}_{ij}\in [0,z_j^{(0)}]$ и $\forall\, k\in I_*\ \overline{z}_{ij}\geq \overline{z}_{kj}$.

Для $j=\varphi(i)$ определяем равновесные значения $z_{j}^{*}=\overline{z}_{ij}$

Решаем систему уравнений $\sum_{i \in I_k} \widetilde{q}_{ij}(z_j) y_i = z_j^{(0)} - z_j$ относительно переменных $y_i \geq 0, \, z_j \in [0, z_j^{(0)}]$ с условиями:


 ${z}_{j}={z}_{j}^{st}$ для $j\in {
m \phi}(I_{st})$ и ${y}_{i}=0$ для $i
ot\in I_{st}$.


Такое решение и есть искомое равновесие.

Абакумов А.И. Признаки стабильности водных экосистем в математических моделях // Труды Института системного анализа РАН. Системный анализ проблемы устойчивого развития. М.: ИСА РАН. 2010, т. 54, с. 49 — 60.

Абакумов А.И. Устойчивость в моделях жизнедеятельности фитопланктона // Вестник НГУ (серия: информационные технологии). 2012, т. 10, вып. 1, с. 24 — 32.

Устойчивость. Поиск равновесий.

Абакумов А.И., Пак С.Я. Сосуществование видов в микробном сообществе. Модельное исследование // Информатика и системы управления. 2012, №3 (33), с. 15 — 24.

Вертикальное распределение фитопланктона

$$\begin{cases} \frac{\partial y_{i}}{\partial t} = k_{i}^{(y)} \frac{\partial^{2} y_{i}}{\partial x^{2}} + \mu_{i}(t, x, z, I) y_{i} - e_{i}(y) y_{i} \\ \frac{\partial z}{\partial t} = k^{(z)} \frac{\partial^{2} z}{\partial x^{2}} - \sum_{i=1}^{m} \gamma_{i} \mu_{i}(t, x, z, I) y_{i} + \sum_{i=1}^{m} \beta_{i} \gamma_{i} e_{i}(y) y_{i} \\ \frac{\partial I}{\partial x} = -\alpha(t, x, y, z) I \end{cases}$$

$$\mu_i(t, x, z, I) = \mu_i^{(0)} \cdot \mu_i^{(z)}(z) \cdot \mu^{(I)}(I) \cdot \mu_i^{(\theta)}(\theta(t, x))$$

$$\mu_i^{(z)}(z) = \frac{z}{z_i^{(0)} + z} \qquad \mu^{(I)}(I) = I \exp(-\delta I) \qquad \mu_i^{(\theta)}(\theta) = \exp(-\frac{(\theta - \theta_i^{(0)})^2}{2\tau_i^2})$$

$$e_i(y) = e_{i0} + e_{i1}y$$
 $\alpha(t, x, y, z) = \alpha_0 + \sum_{i=1}^m \alpha_{i1}y_i + \alpha_2z$

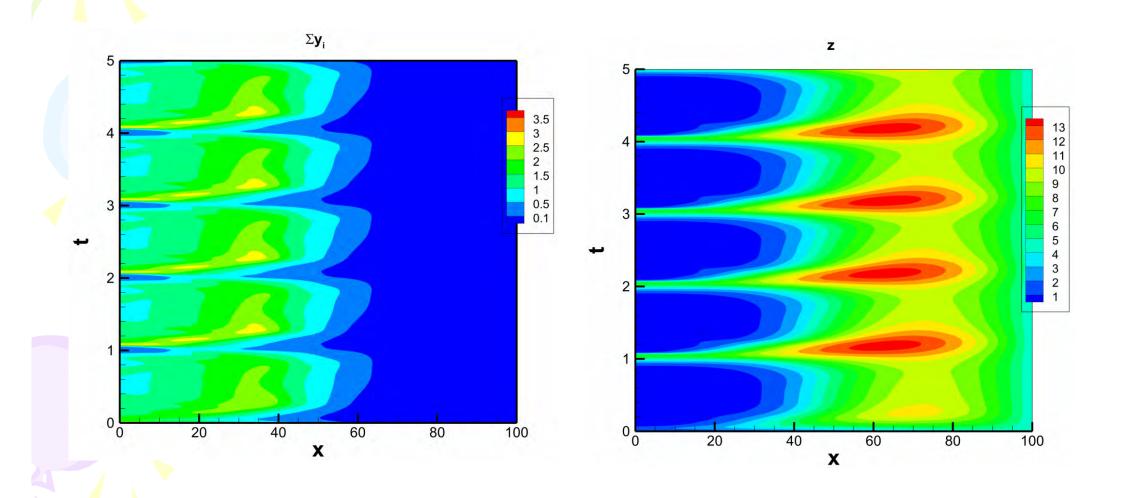
Годовой цикл

$$\theta(t,x) = \theta_m(t) exp(-\frac{(x-x_{\theta}(t))^2}{2\sigma^2(t)}) \qquad \theta_m(t) = 4\frac{t}{T}(1-\frac{t}{T})$$

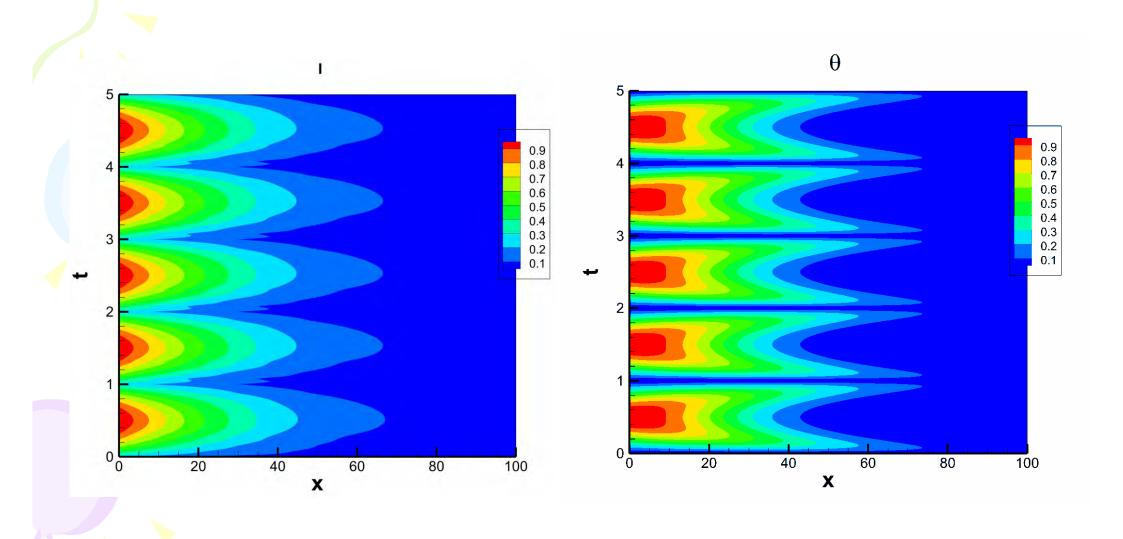
$$I(t,0) = 4I_1 \frac{t}{T} (1 - \frac{t}{T}) + I_0 \qquad \frac{\partial y_i}{\partial x} \Big|_{x=0} = 0 \qquad \frac{\partial y_i}{\partial x} \Big|_{x=\overline{x}} = 0 \qquad \frac{\partial z}{\partial x} \Big|_{x=0} = 0$$

$$z_j(t,\overline{x}) = \tilde{z}_j$$

 $\theta(t,x)$

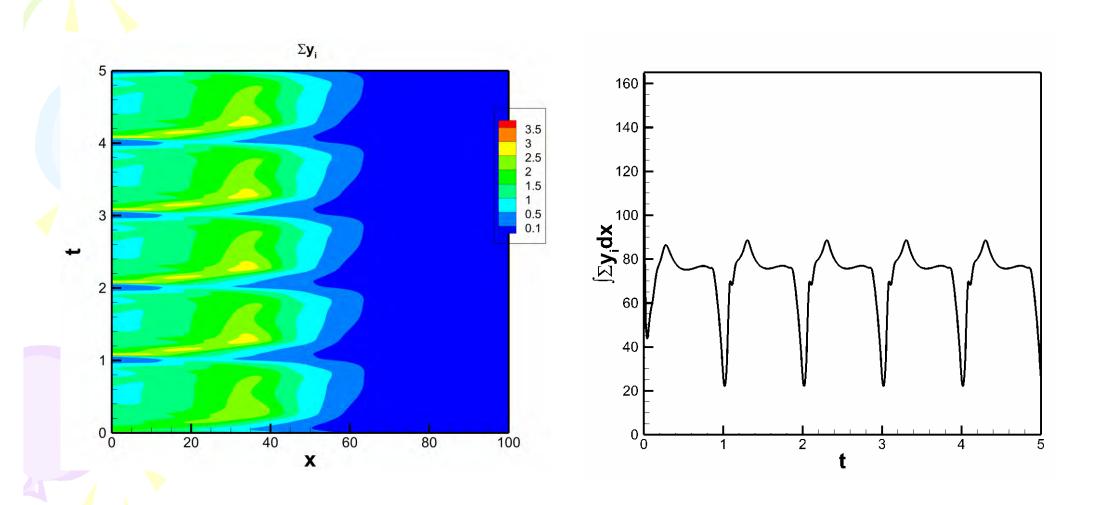

t	0	70	140	300	365
σ	100	100	20	20	100
x_{θ}	40	40	0	0	40

Абакумов А.И., Израильский Ю.Г. Влияние условий среды на распределение фитопланктона в водоеме // Математическая биология и биоинформатика. 2012, т. 7, № 1, с. 274 — 283.

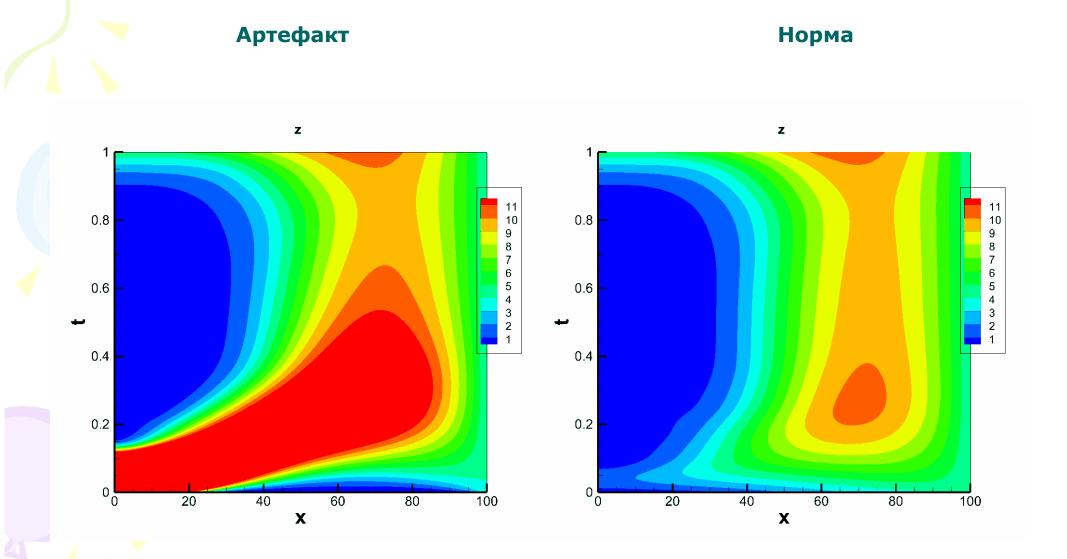

Три группы планктона

Плотность общей биомассы

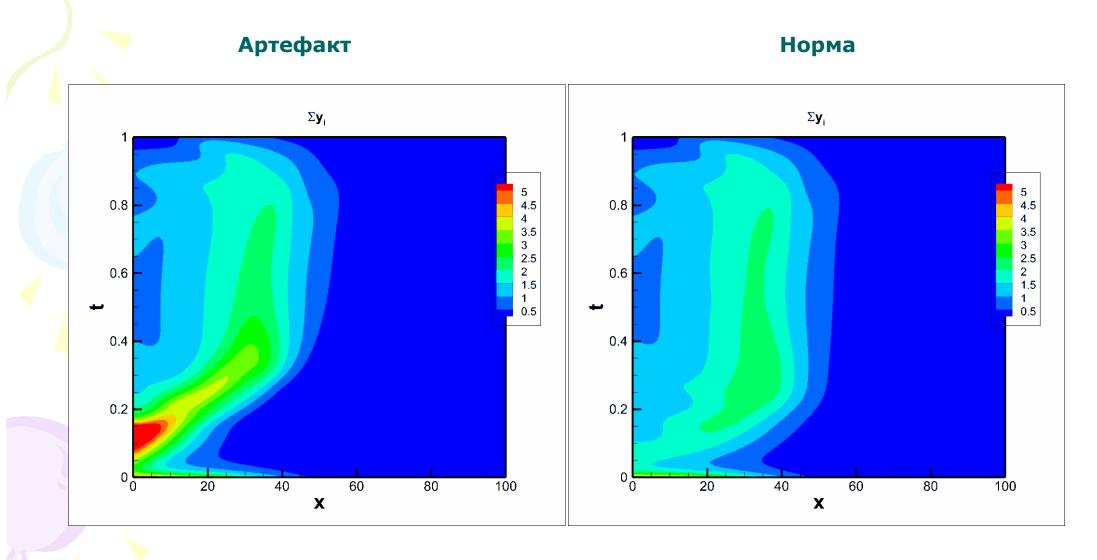
Питательные вещества



Освещенность и температура

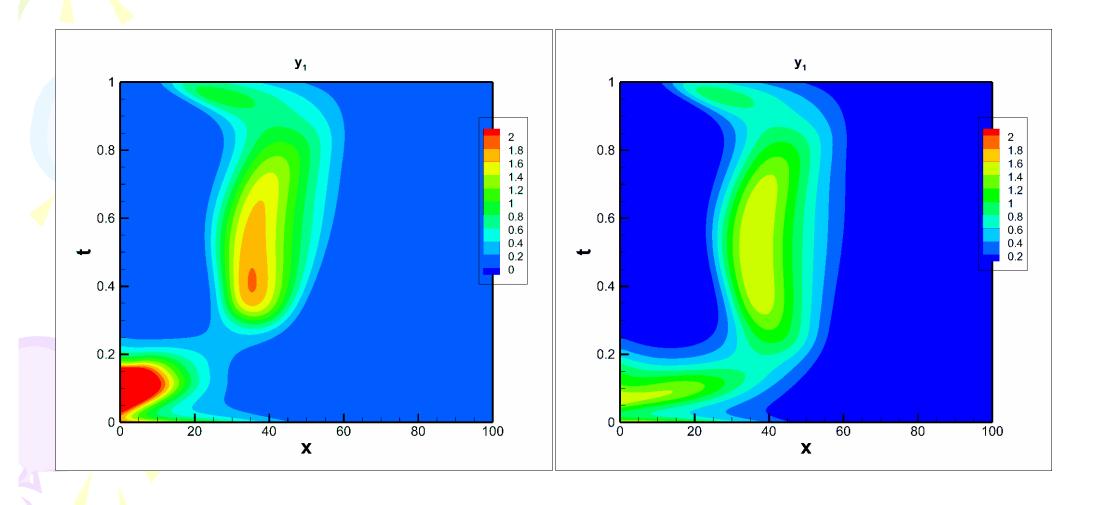

Три группы планктона

Плотность общей биомассы

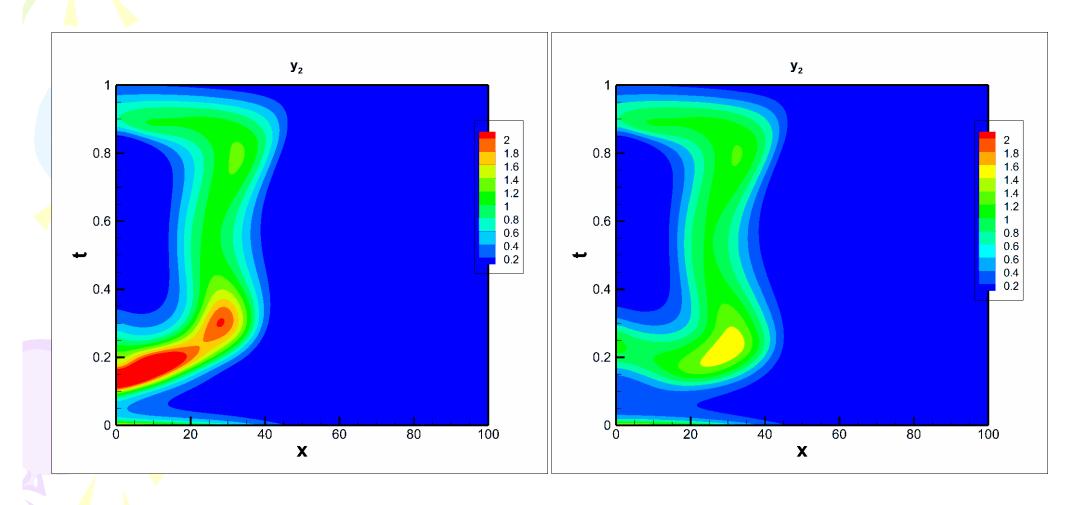


Модельный эксперимент

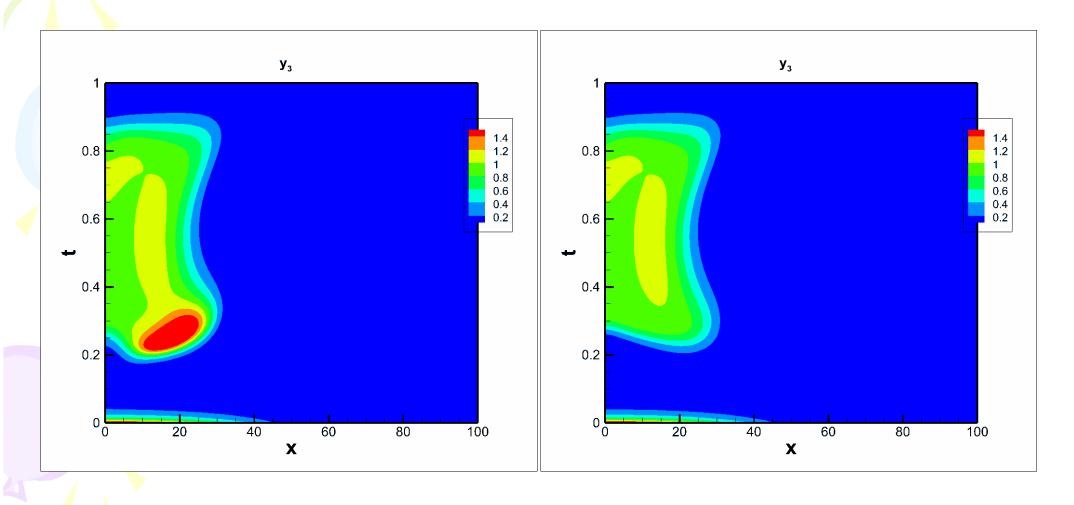
Питательные вещества



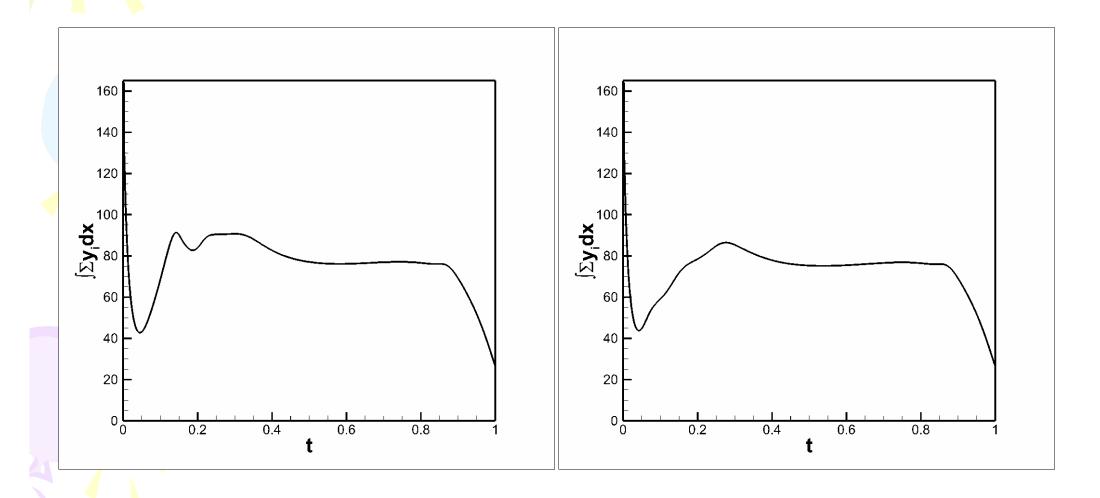
Общее содержание

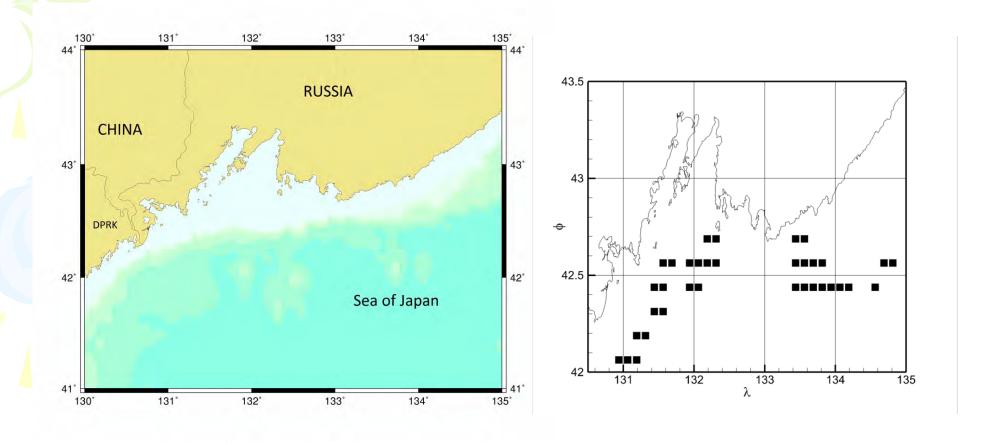

Холоднолюбивая группа

Артефакт Норма


Средняя группа

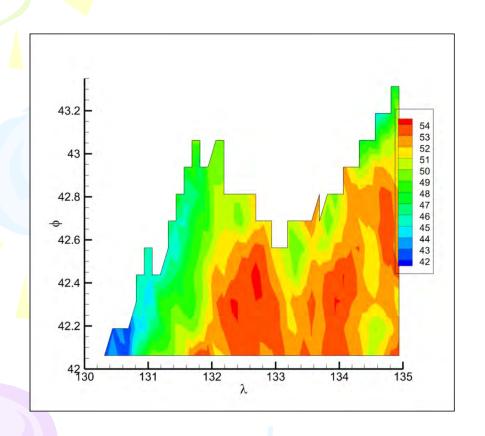
Артефакт Норма

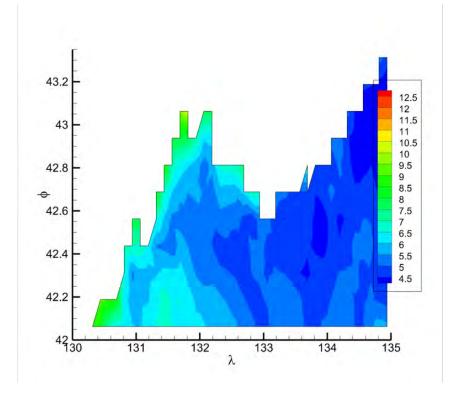

Теплолюбивая группа



Динамика общей биомассы

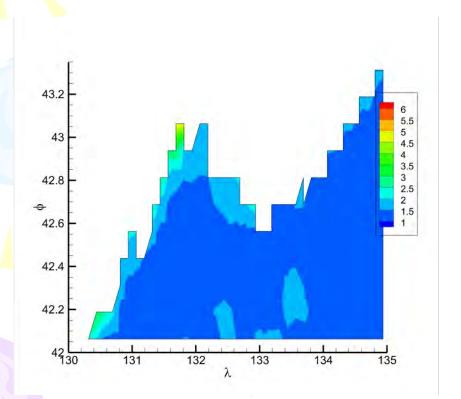
Артефакт Норма

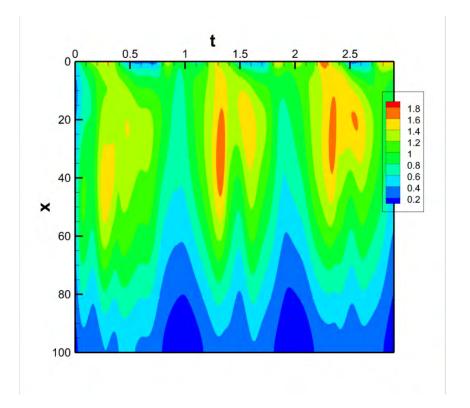

Залив Петра Великого



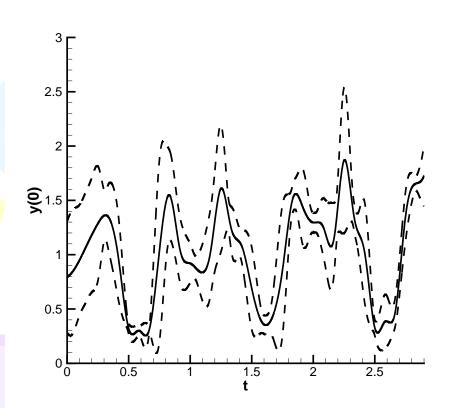
Изучаемый район и места полноценных данных

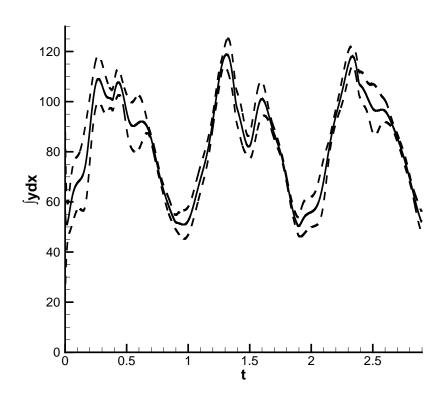
Абакумов А.И., Израильский Ю.Г. Оценка содержания хлорофилла в море по спутниковым данным (залив Петра Великого) // Вестник НГУ (серия: информационные технологии).

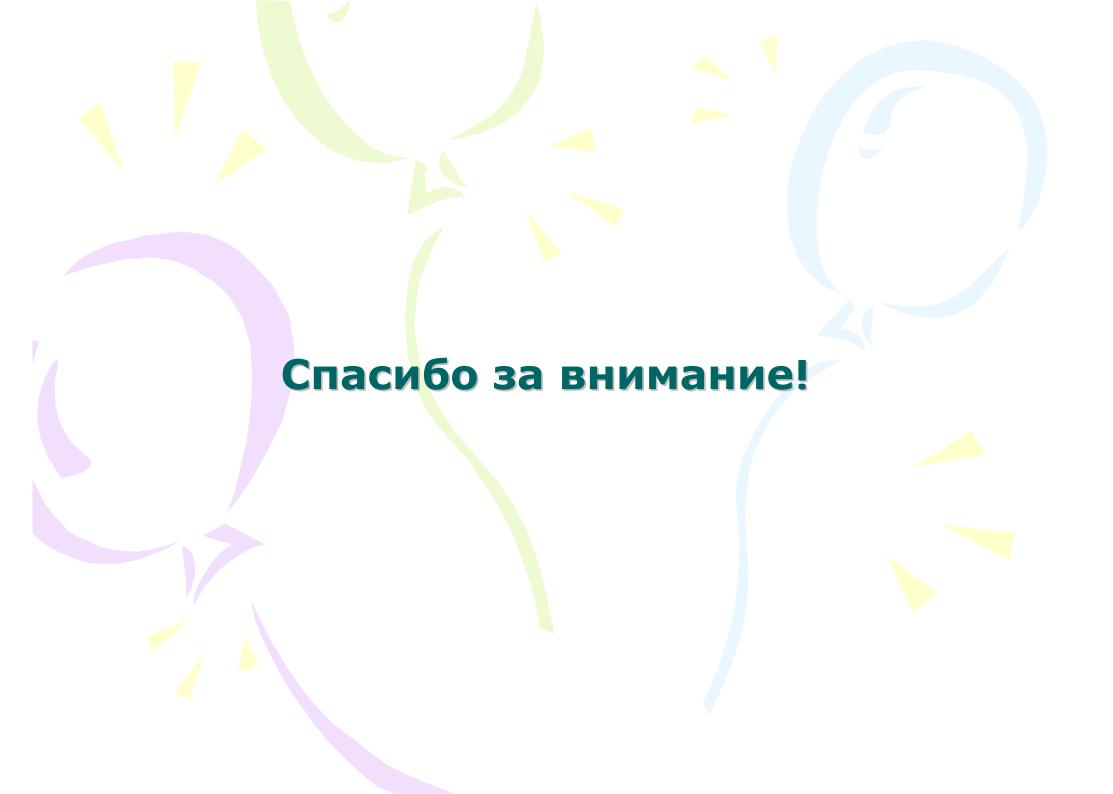

Освещенность и температура в апреле 2010 года



Залив Петра Великого


Хлорофилл в заливе ПВ в апреле 2010 года




Динамика концентрации хлорофилла в южной части залива

Динамика хлорофилла. Концентрация на поверхности и содержание в толще воды

