ЭКОМАТМОД-2013

Математическое моделирование при анализе и решении некоторых фундаментальных и прикладных задач общей биологии

Е.Я. Фрисман ИКАРП ДВО РАН

Модель Мальтуса

Essay on the Principle of Population (1798)

Томас Роберт Мальтус

$$X_{n+1} = \mathcal{E}X_n$$

Теория эволюции: Чарльз Дарвин

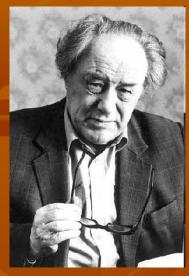
Математическая популяционная генетика: Р. Фишер, С. Райт, Дж. Холдейн, С.С.Четвериков

Динамика экосистем

Модель Пьера Ферхюльста

Модели Вито Вольтерра

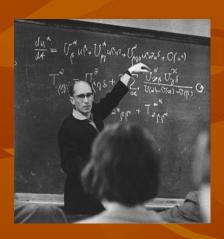
Математическое моделирование в биологии: «столичные» школы



Никита Николаевич Моисеев Москва

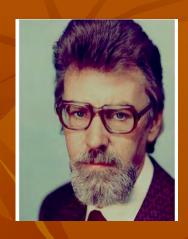
Юрий Михайлович Свирежев

Москва - Потсдам



Альберт Макарьевич Молчанов

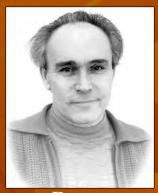
Москва – Пущино



Ратмир Александрович Полуэктов Ленинград

Математическое моделирование в биологии: Новосибирская школа

Алексей Андреевич Ляпунов



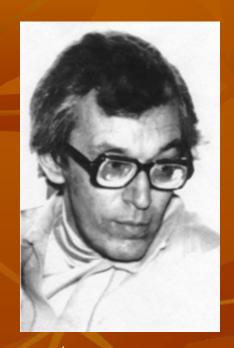
Вадим Александрович Ратнер

Игорь Андреевич Полетаев

Николай Александрович Колчанов

Андрей Георгиевич Дегерменджи

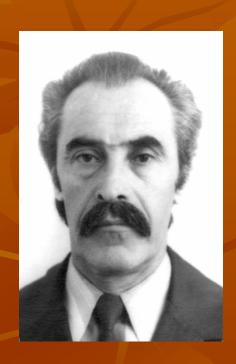
Новосибирская школа Математическая популяционная генетика



Александр Дмитриевич Базыкин

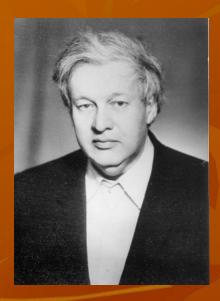
3.С. Никоро и Д.К. Беляев. Новосибирск, конец 1970-х

Зоя Софроньевна Никоро Дмитрий Константинович Беляев



Эмиль Хаймович Гинзбург

Математическая популяционная экология Бифуркации в моделях динамики численности



Александр Павлович Шапиро

Лорд Роберт Мэй (Robert May)
Президент Королевского научного общества
Великобритании

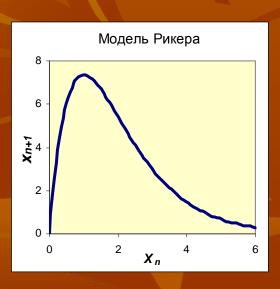
Моделирование динамики численности популяций с неперекрывающимися поколениями

$$x_{n+1} = ax_n f(x_n)$$

f(x) выбирается так, чтобы выполнялось f(0) = 1 a — репродуктивный потенциал популяции

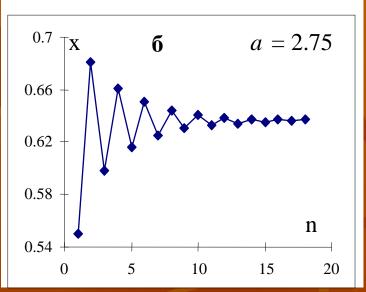
- Аналог модели Ферхюльста f(x) = 1-kx
- Модель Рикера f(x) = exp(-bx)
- Трехпараметрическая модель Хасселла

$$x_{n+1} = \frac{\alpha x_n}{(1 + \gamma x_n)^{\beta}}$$



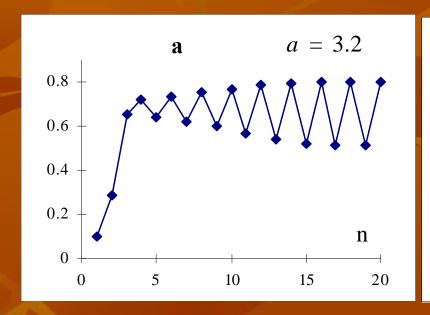
Графики решений уравнения $x_{n+1} = ax_n(1-x_n)$ при значениях параметра a < 3

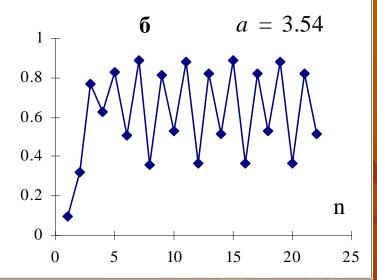




- а) монотонное стремление к равновесию
- б) затухающие колебания

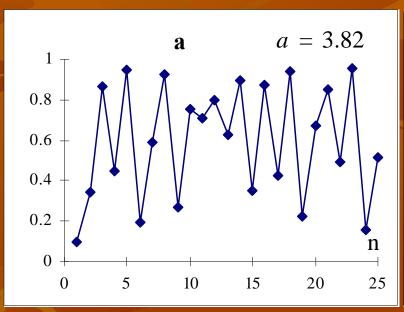
Γ рафики решений уравнения $x_{n+1} = ax_n(1-x_n)$, соответствующие предельным циклам

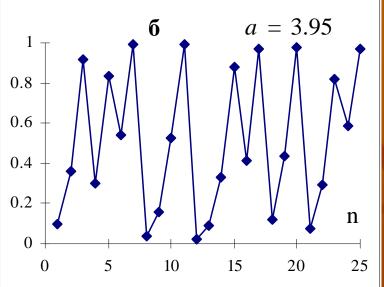




- а) 2-циклу,б) 4-циклу

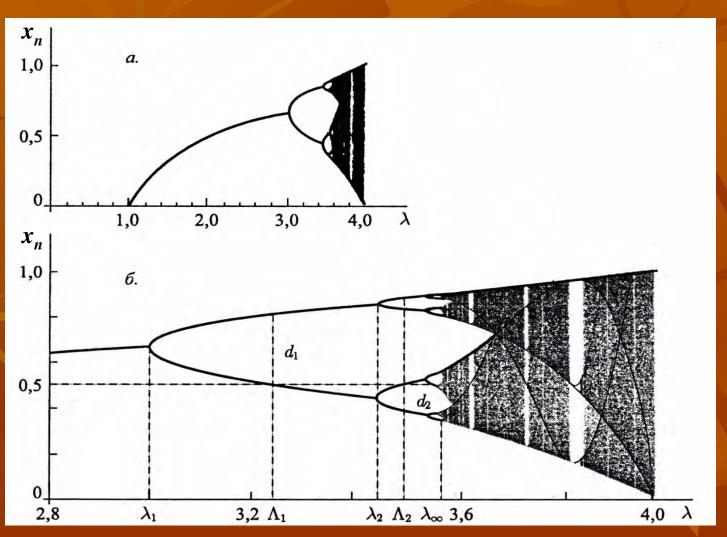
Графики решений уравнения $x_{n+1} = ax_n(1-x_n)$, соответствующие хаотической динамике





Бифуркационная диаграмма модели

$$x_{n+1} = \lambda x_n f(x_n) \qquad f = 1-x$$



Математическая генетика и экология

Изменение характера динамики численности в процессе эволюции лимитированной популяции

$$\begin{cases} q_{n+1} = q_n (W_{AA}(x_n) q_n + W_{Aa}(x_n) (1 - q_n)) / \overline{W}_n(x_n) \\ x_{n+1} = \overline{W}_n(x_n) x_n, \end{cases}$$

$$\overline{W}_n = W_{AA}(x)q_n^2 + 2W_{Aa}(x)q_n(1-q_n) + W_{aa}(1-q_n)^2$$

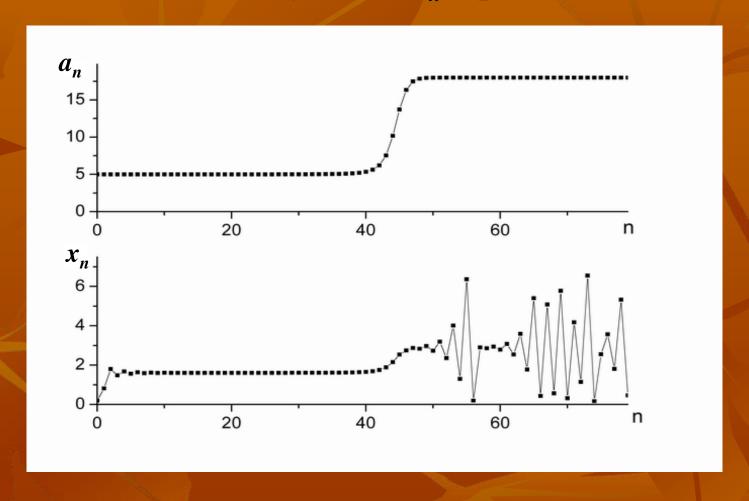
 q_n - частоты аллеля A, x_n — численность популяции W_{AA} W_{aa} W_{Aa} - приспособленности генотипов AA, Aa, aa

F-отбор

$$W_i(x) = a_i f(x)$$
 $x_{n+1} = a_n x_n f(x_n)$ Теорема Фишера

$$a_{n+1} \ge a_n$$

Динамика средней относительной приспособленности (a_n) и численности популяции (x_n) при $f(x)=\exp(-x)$



Biometrical Journal, 1992. Vol. 24, no. 6. P. 531-542

Концепция г- К-отбора

$$W_i(x) = \exp(r_i(1 - x/K_i))$$

 r_i — мальтузианский параметр i-го генотипа K_i — ресурсный параметр i-го генотипа

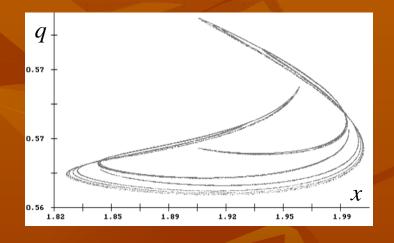
Аттрактор модели при

$$K_{Aa} = 0.86$$
, $r_{Aa} = 1.18$, $K_{Aa} = 0.95$, $r_{Aa} = 3.8$, $K_{aa} = 0.57$, $r_{aa} = 2.8$

Генетика, 2005. Том 41, № 11. С.1575-1584

Известия вузов. Прикладная нелинейная динамика, 2006, т. 14, №1. С. 98-112

Это направление развивалось совместно с О.Л.Ждановой, Е.А Павловой (Колбиной)



Динамика двухвозрастной популяции

$$\begin{cases} x_{n+1} = a(x_n, y_n) y_n \\ y_{n+1} = s(x_n, y_n) x_n + v(x_n, y_n) y_n \end{cases}$$

х - численность младшего возрастного класса

у - численность старшего возрастного класса, составляющего репродуктивную часть популяции

n — номер периода размножения

a(x,y) – рождаемость

s(x,y), v(x,y) — выживаемости неполовозрелых и половозрелых особей, соответственно

При a=s=v=1 и $x_1=y_1=1$ эта система уравнений задает две смежные последовательности чисел Фибоначчи, которые стремятся к бесконечности и аппроксимируются геометрической последовательностью со знаменателем $\varphi=(1+\sqrt{5})/2\approx 1,618$

Плотностное лимитирование рождаемости

$$\begin{cases} x_{n+1} = a \cdot y_n \cdot \exp(-\alpha \cdot x_n - \beta \cdot y_n) \\ y_{n+1} = s \cdot x_n + v \cdot y_n \end{cases}$$

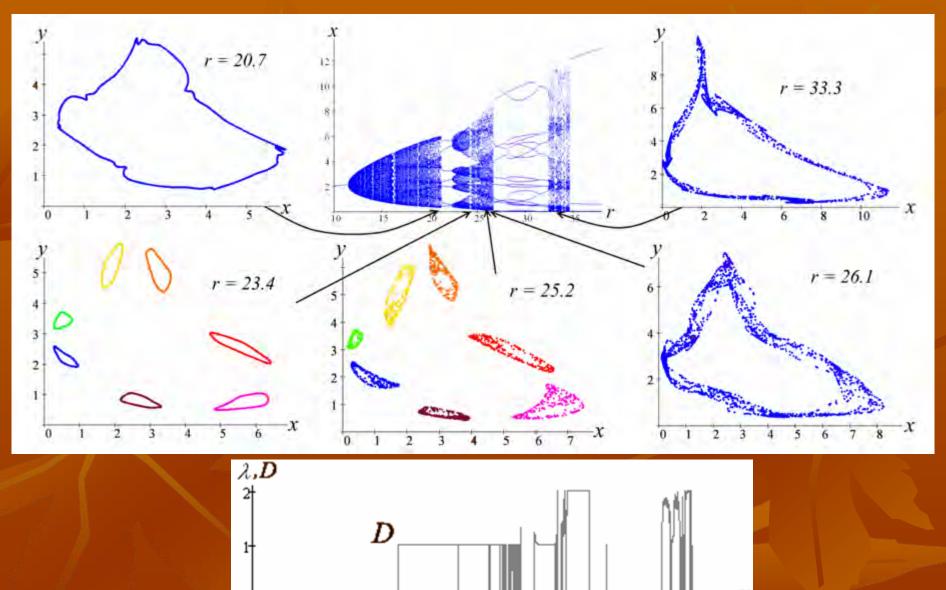
а - репродуктивный потенциал популяции,

 α , β - коэффициенты, характеризующие уменьшение рождаемости с ростом численностей младшего и старшего возрастного класса, соответственно

Удобными параметрами для исследования последовательности наблюдаемых бифуркаций в данной модели являются величины

$$b = \alpha/(\beta s)$$
 и $r = as$

$\overline{\mathcal{L}}$ инамические режимы при b=0.2 и v=0.1



3ď

10

Предварительные выводы

- Наиболее эффективными механизмами регуляции роста численности являются: уменьшение рождаемости с ростом числа взрослых особей и падение выживаемости приплода с увеличением его численности.
- Вместе с тем, именно такая регуляция роста численности при увеличении репродуктивного потенциала приводит к возникновению колебаний численности, имеющих весьма сложную временную организацию.
- Зона параметрической устойчивости популяции может существенно увеличиться, если коэффициент выживаемости младшей возрастной группы будет уменьшаться не только с ростом численности приплода, но еще и с ростом численности половозрелых особей. Однако, такой регуляторный механизм оказывает положительное влияние только при сравнительно слабом воздействии взрослых, не превосходящим авторегуляторную роль молоди.
- Регуляция выживаемости молоди преимущественно взрослыми особями оказывается малоэффективна: область устойчивости сильно сужается и при выходе из нее популяция испытывает колебания, подобные биениям.

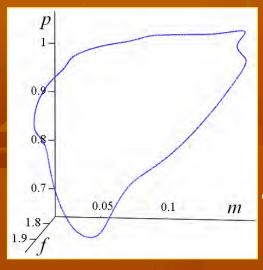
 Уменьшение выживаемости половозрелых особей с ростом численности популяции не может служить эффективным механизмом сдерживания популяционного роста, однако этот тип регуляции способен существенно ослабить интенсивность и размах популяционных колебаний.

Доклады академии наук (раздел «Общая биология») 1994. Т. 338, № 2. С. 282-286; 2010. Т. 431, № 6. С. 844–848.

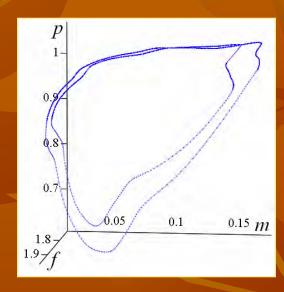
Известия вузов «Прикладная нелинейная динамика», 2010. Т. 18, № 2, с.113-130. Ecological Modelling, 2011, Vol. 222. Р. 1943-1950.

Совместно с Г.П. Неверовой, О.Л. Ревуцкой

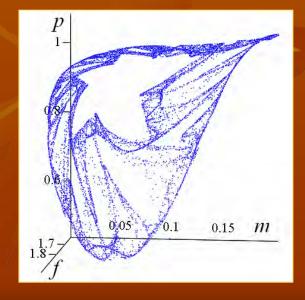
Эволюция предельные траекторий двухвозрастной популяции с половой структурой



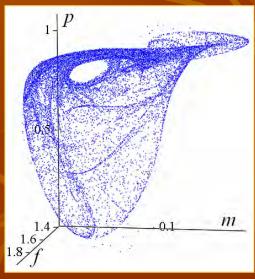
a = 0,6555



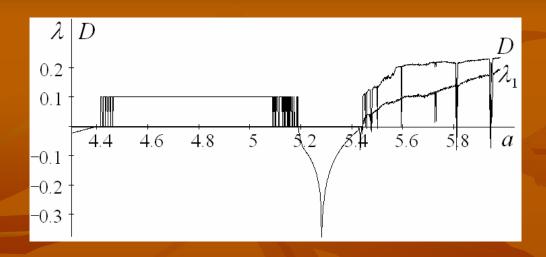
a = 0,656

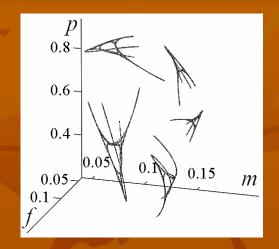


a = 0,662

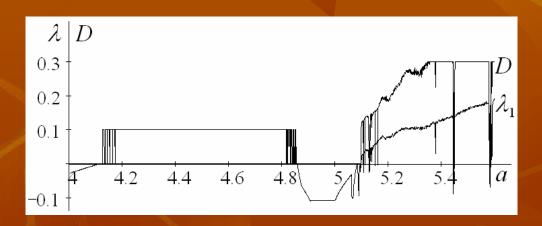


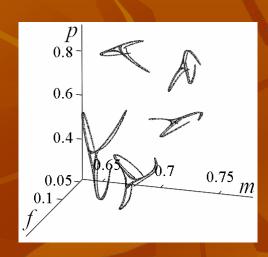
a = 0,669





$$s = v = 0.5$$





$$s = 0.5$$
 $v = 0.9$

a = 5.12

Модель эволюции двухвозрастной популяции

 x_n - численность молоди

 y_n - численность взрослых

 p_n , q_n - частоты аллеля А в старшем и младшем возрастном классе

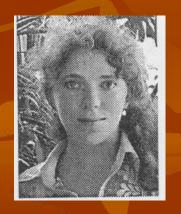
 W_{aa} , W_{Aa} , W_{AA} - приспособленности генотипов

$$\begin{cases} x_{n+1} = a_n y_n \\ y_{n+1} = x_n (1 - x_n) + v y_n \end{cases}$$

$$q_{n+1} = \frac{p_n (W_{AA} p_n + W_{Aa} (1 - p_n))}{a_n}$$

$$p_{n+1} = \frac{x_n (1 - x_n) q_n + v y_n p_n}{x_n (1 - x_n) + v y_n}$$

$$a_n = W_{AA} p_n^2 + W_{Aa} p_n (1 - p_n) + W_{aa} (1 - p_n)^2 -$$
 средняя приспособленность



Совместно с О.Л. Ждановой

Распределение численности младшей (x) и старшей (y) возрастной группы в предельных траекториях модели двух возрастной популяции (слева) и трех возрастной (справа) в зависимости от величины коэффициента a.

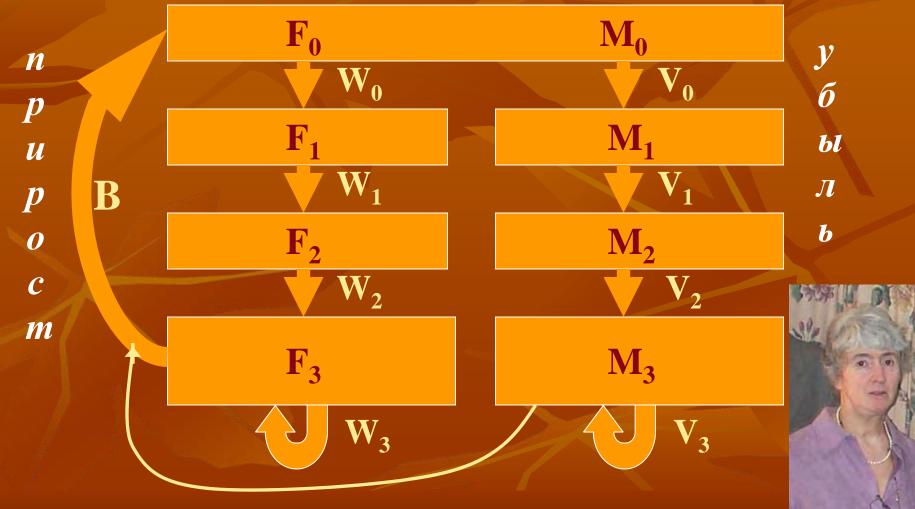


- Увеличение продолжительности и сложности онтогенеза не увеличивает «в среднем» степень хаотизации популяционной динамики.
 В пользу большей динамической устойчивости говорит обнаруженное в моделях многовозрастных популяций расширение области значений репродуктивного потенциала, соответствующей стационарной динамике, сужение размаха флуктуаций численностей возрастных групп, а также преобладание областей, в которых аттракторы имеют очень небольшую степень хаотизации.
- Можно сказать, что удлинение и усложнение онтогенеза, создавая потенциальные возможности для увеличения хаотизации «в среднем», в конечном итоге оказывается способным обеспечить «обратный» переход «от хаоса к порядку» и даже привести к устойчивым динамическим режимам.
- Этот результат дает удивительно простое объяснение тому факту, что при достаточно широком спектре динамических режимов, теоретически возможных для популяций с возрастной структурой, реально найденные периоды исключительно узкие и многие «дикие» популяции демонстрируют очевидно стабильную либо около-циклическую динамику.

Генетика, 2009. Т. 45, №. 9, с. 1277–1286 Журнал общей биологии, 2011. Т. 72, № 3, с.214-228.

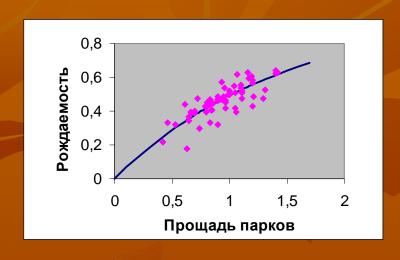
Модели динамики реальных популяций

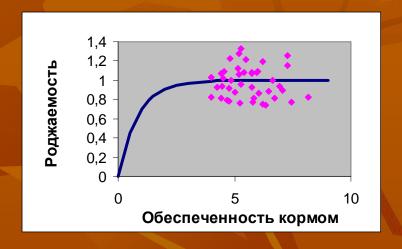
Блок схема модели динамики популяции пятнистого оленя

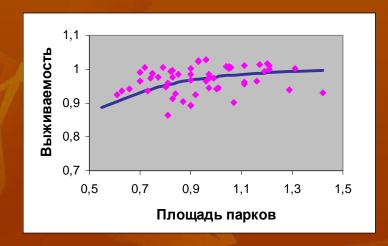


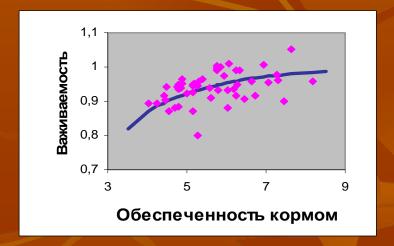
Совместно с Е.И. Скалецкой, З.В Климовой, В.В.Храмцовым

Зависимость рождаемости и выживаемости самок от площади парков и запасов корма

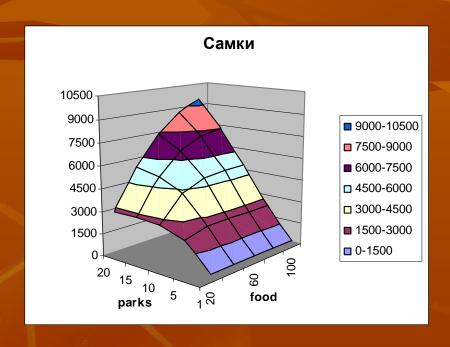




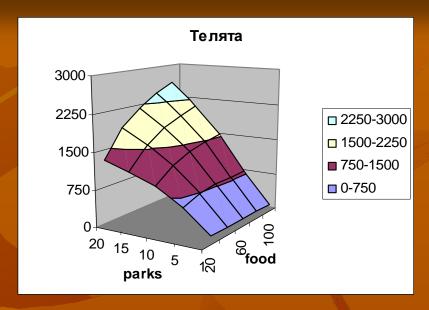


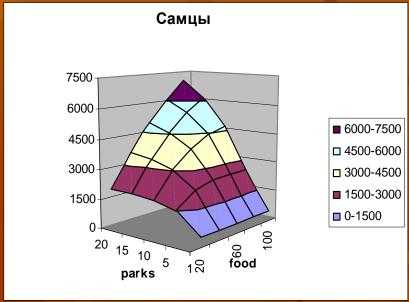


Стационарные численности возрастных групп пятнистого оленя

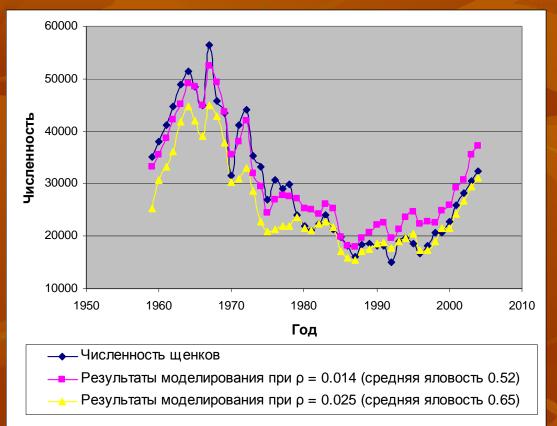


Зоологический журнал, 1988, № 2. С. 156-164. Ecological Modelling, 1994. Vol. 26. P. 41-44.





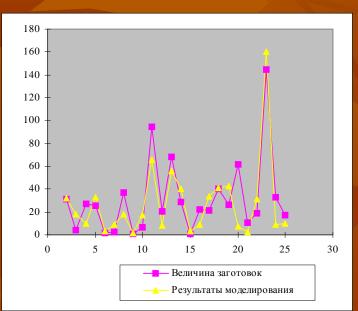
Анализ и моделирование популяционной динамики северного морского котика

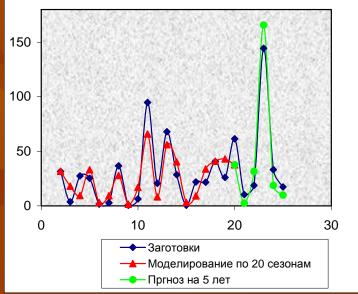


Совместно с Е.И. Скалецкой А.Е. Кузиным,

Журнал общей биологии, 1990. T.41, №2. C. 270-278. Ecological Modelling, 1992. Vol. 16. P. 151-172.

Анализ динамики промысла и результаты моделирования величины заготовок маньчжурской белки





Совместно с Е.В.Ашихминой

Журнал общей биологии, 1992. Т.43, №5. С. 705-711 Ecological Modelling, 1995. Vol. 30. P. 145-156.

Моделирование динамики популяций лососевых рыб

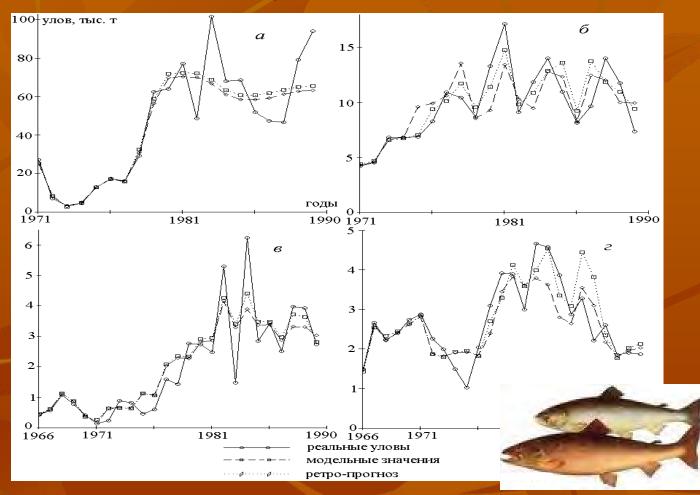
$$x_{n+k} = a \sum_{i=0}^{k-1} \gamma_{k-i} x_{n+i} e^{-x_{n+i}}$$

Возрастная структура Камчатских популяций лососевых

Вид	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6	γ ₇
Кета	0	0	0.649	0.333	0.018	-	-
Нерка	0	0	0.044	0.487	0.469	_	
Кижуч	0	0	0.413	0.01	0.553	0.013	3 0.011
Чавыча	0	0	0	0.126	0.368	0.465	5 0.041

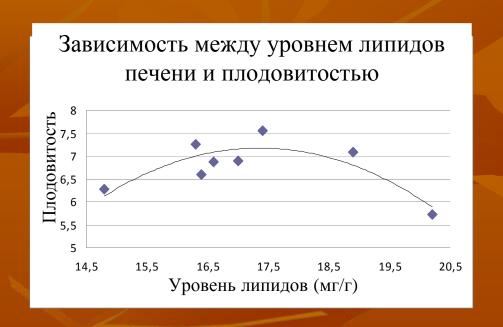
Реальная, модельная динамика и ретро-прогноз уловов нерки (а), кеты (б), кижуча (в) и чавычи (г)

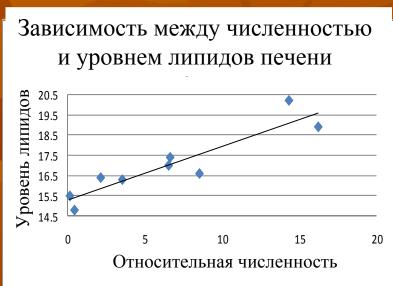
Совместно с Э.В. Сычевой, Е.В. Ласт



Доклады академии наук, 2004. Т. 394, № 4. С. 569-573 Известия Академии наук. Серия биологическая. 2005, № 5. С. 425-437 Ecological Modelling, 2006, v. 198. Р. 463-472.

Анализ и моделирование динамики численности красно-серой и красной полевки





$$a = -32.24 + 4.5L - 0.13L^2$$
$$R^2 = 0.73$$

$$L = 15.30 + 0.27y$$
$$R^2 = 0.84$$

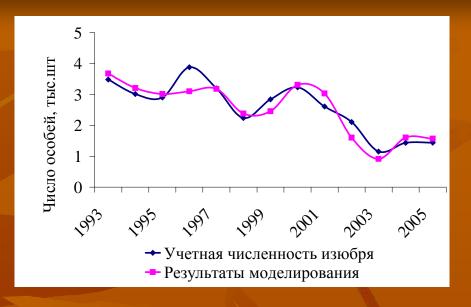
Совместно с Е.В. Ласт, А.Н. Лазуткиным

 $R^2 = 0.88$

Вестник Северо-Восточного научного центра ДВО РАН, 2010, №2, с. 43-47

Моделирование динамики промысловых популяций, обитающих на территории EAO

Биологические ресурсы Дальнего Востока: комплексный региональный проект ДВО РАН. – М.: КМК, 2007. С.184–202.



Совместно с О.Л. Ревуцкой Г.П. Неверовой,

Результаты анализа моделей динамики популяций промысловых видов

- В отсутствии промысла характер динамики численности популяции определяется величиной репродуктивного потенциала и наличием ресурсов жизнедеятельности (прежде всего кормовых запасов).
- При небольшом и среднем репродуктивном потенциале колебания численности фактически отражают (с некоторым запаздыванием) колебания пищевых запасов. Такую динамику мы наблюдаем у кабана, изюбря и некоторых других копытных.

- При большом репродуктивном потенциале колебания численности становятся резче и определяются, в основном, плотностно-зависимыми факторами, а колебания запасов корма играют фоновую роль. Типичный пример белка и колонок.
- Ведение промысла снижает остроту колебаний, связанную с повышенной плотностью, но сохраняет колебания, связанные с изменением в кормовой базе.
- Поскольку интенсивность промысла зависит от уровня численности, промысел может как «раскачивать» вынужденные колебания, так и приводить к резкому падению численности популяции вплоть до ее полного вырождения.

Модели динамической пространственной самоорганизации

$$\dot{u}_{i}(x,t) = \int_{M} \alpha_{i}(x,y) f(u_{i}(y,t)) dy - \varphi(u_{i}(x,t)) \sum_{j} \int_{M} \beta_{ij}(x,y) g(u_{j}(y,t)) dy$$

 $u_i(x,t)$ - плотность биомассы i-го вида в точке x в момент времени t M- ареал обитания сообщества

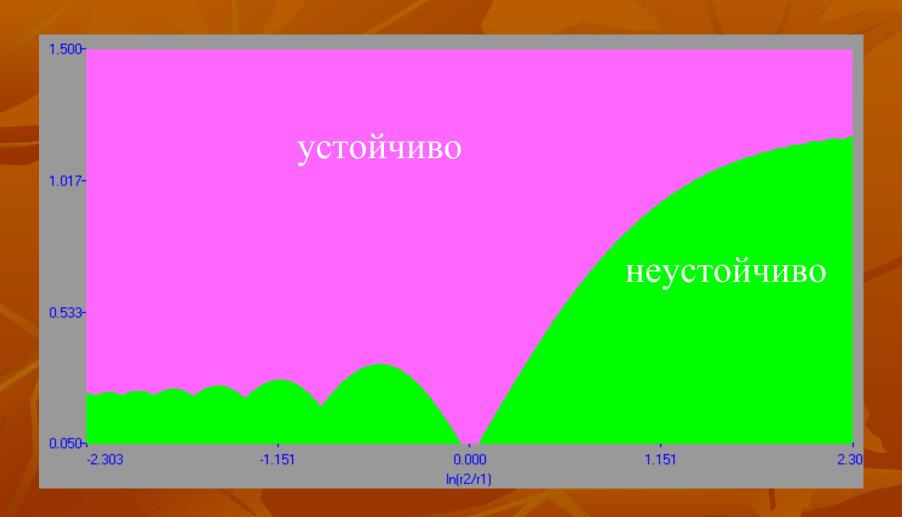
Это направление создавалось А.В. Тузинкевичем, Н.П. Громовой

Конкретизация

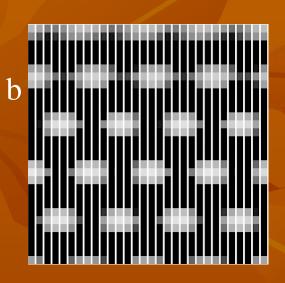
$$\dot{u}_i(x,t) = \int_M \alpha_i(x,y) u_i(y,t) dy - u_i^{\gamma_i}(x,t) \sum_j \int_M \beta_{ij}(x,y) u_j^{\rho_j}(y,t) dy$$

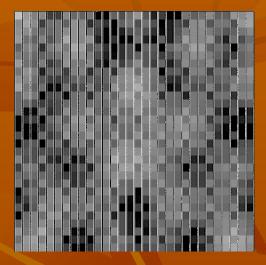
$$\alpha(x, y) = \begin{cases} S_{\alpha} \exp\left(-\frac{2\|x - y\|^2}{r_{\alpha}}\right), & \|x - y\| \le r_{\alpha} \\ 0, & \|x - y\| \ge r_{\alpha} \end{cases}$$

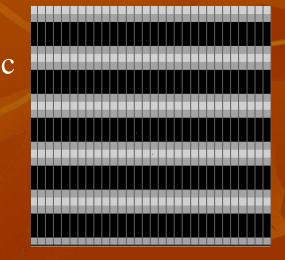
Диаграмма потери устойчивости однородного решения в координатах $\gamma-\ln r_{\rm c}/r_{\rm \beta}$

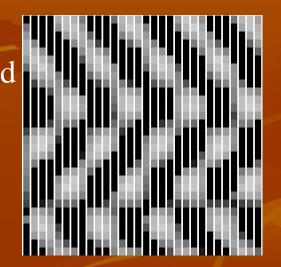


Пространственное распределение на двумерном однородном ареале





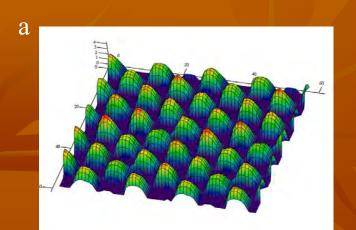


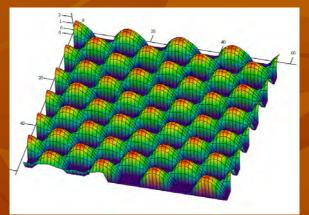


Исходное распределение

	r_{α}	r_{β}	γ	
a	6	6,0	0,950	
b	5	5,2	0,900	
C	5	5,0	0,900	
d	5	5,0	0,875	

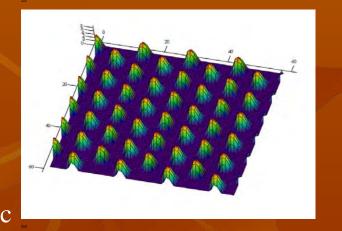
Пространственное распределение на двумерном однородном ареале

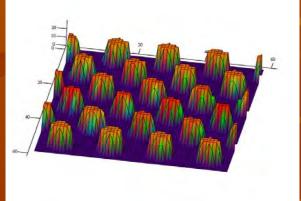




r_a	r_{B}	γ

	r_a	r_{β}	γ
a	7	7,5	0,9
b	7	10,0	0,9





	r_{α}	r_{β}	γ
c	7	9,0	0,98
d	8	8,2	0,90

d

Пространственное распределение пойменной растительности

Результаты анализа модели пространственно-временной динамики

Показано, что интенсивная пространственная конкуренция за ресурсы (прежде всего за свет) вызывает процессы хаотической самоорганизации и возникновение сложно структурированных неоднородных (пятнистых) пространственных распределений

Вестник ДВО РАН, 1996, № 6. С. 120-129. Ecological Modelling, 1990.V.52. P. 207-223; 2008, Vol. 212. P. 536-544.

Благодарю за внимание!

