Метапопуляционная динамика с учетом межвидового взаимодействия

Кириллов А.Н.

ИПМИ КарНЦ РАН

В ареале (patch) присутствуют n(t) популяций с количественными характеристиками

$$x_{i_1}, \dots, x_{i_{n(t)}}$$

Популяция *i*, присутствующая в ареале, может находиться в одном из состояний:

колонизация
$$(c_i)$$
 взаимодействие - развитие (d_i) эмиграция (e_i)

Структура ареала $W = (\gamma, s, A)$

Внешняя структура

$$\gamma = (\gamma_1, ..., \gamma_N)$$

 $\gamma_i = 1$, если популяция i в ареале

 $\gamma_i = 0$, иначе

Внутренняя структура

$$s = (\gamma_1 s_1, \dots, \gamma_N s_N)$$

$$s_i = \begin{cases} c_i \\ e_i \\ d_i \end{cases}$$

Структура взаимодействий $A = \{\gamma_i \gamma_j a_{ij}\} = \{b_{ij}\}$

$$a_{ij} = 0$$
 или 1

Динамика структуры

Многозначный оператор F

$$F: W \to F(W) \subset \{\gamma, s, A\}$$

Траекторный ансамбль

$${F^k(W)}, k \ge 0$$

Задача: исследовать поведение $\{F^k(W)\}$

Динамическая система с переменной структурой, порождающая оператор *F*

Динамика популяции і

$$\gamma_i \dot{x}_i = \gamma_i f_i^c(b_{11} x_1, \dots, b_{1N} x_N)$$

колонизация

$$\gamma_i \dot{x}_i = \gamma_i f_i^e(b_{11} x_1, ..., b_{1N} x_N)$$

эмиграция

$$\gamma_i \dot{x}_i = \gamma_i f_i^d(b_{11} x_1, \dots, b_{1N} x_N)$$

взаимодействие развитие

Эволюционное время k_i популяции i

$$R^N = \bigcup_{j=1}^{m_i} \Omega_j^i$$

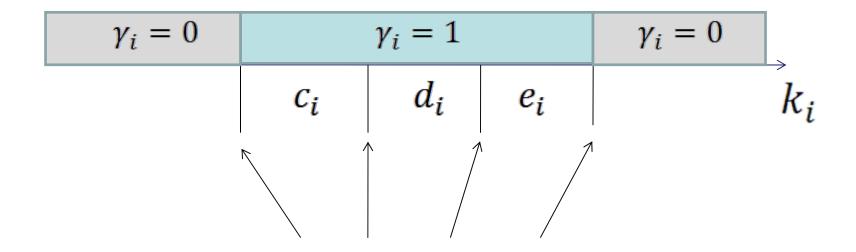
$$\dot{k}_i = g_j^i(\gamma_1 x_1, \dots, \gamma_N x_N) \qquad x = (x_1, \dots, x_N) \in \Omega_j^i$$

При попадании $x \in \Omega^i_j$ на границу $\partial \Omega^i_j$ под действие переходного отображения x переводится в Ω^l_j

$$\dot{k}_i = g_j^l(\gamma_1 x_1, \dots, \gamma_N x_N)$$

Изменение структуры

• Ось эволюционного времени



пороговые значения

зависят от состояния системы

Динамика (дискретно-непрерывная)

Динамика популяций - процессы колонизации, взаимодействия, эмиграции

$$(x_1,\ldots,x_N)$$

Динамика эволюционного времени

$$(k_1,\ldots,k_n)$$

Динамика структуры $W = (\gamma, s, A)$

$$W_{n+1} \in F(W_n)$$

Построенная система описывает динамику ареала с переменным количеством n(t) популяций

$$n(t) = \gamma_1 + \dots + \gamma_N$$

и переменной структурой $W=(\gamma,s,A)$

Изменение структуры происходит при прохождении эволюционным временем $(k_1,...,k_n)$ пороговых значений.

Проблема:

моделирование динамики эволюционного времени

Модель ареала со взаимодействием "хищник – жертва"

 x_1, x_2 — численности (плотности) популяций жертв, хищников

Миграция популяции хищников

 W_q — средний вес особи хищника

Тенденция к миграции $W_g \leq \overline{\lambda}$

Миграция начинается при дополнительных условиях

Индивидуальный декремент $\overline{W} = W_g - \overline{\lambda}$

Условия миграции особи хищника

$$\bar{\bar{\lambda}} + \int_{t_0}^{t} \bar{W}(\tau) \, d\tau \le \bar{\Lambda}$$

Условия миграции популяции хищников

$$k_2(t) = k_2(t_0) + \int_{t_0}^t x_2(\tau) \overline{W}(\tau) d\tau \le \Lambda$$

 $k_2(t)$ - эволюционное время популяции хищников - пищевая привлекательность ареала $k_1(t)$ - эволюционное время популяции жертв постоянно — жертва не мигрирует

Динамика эволюционного времени

$$\dot{k_1} = 0 \qquad \qquad \dot{k}_2 = x_2 \overline{W}$$

Пусть вес особи хищника имеет вид

$$\begin{split} W_g(t) &= \lambda_1 \cdot \frac{x_1(t)}{x_2(t)}, & \frac{x_1(t)}{x_2(t)} \leq const \\ W_g(t) &= const, & \frac{x_1(t)}{x_2(t)} > const \end{split}$$

Тогда
$$\dot{k_2} = x_1 - \lambda x_2$$
 $\lambda = \frac{\lambda}{\lambda_1}$

Пусть
$$k_2(t) = n(t)$$

Динамика популяций

$$n > \Lambda$$
: $\dot{x}_1 = x_1(a - bx_2)$, $\dot{x}_2 = x_2(kbx_1 - m)$, $\dot{n} = x_1 - \lambda x_2$ (P_2)

$$n \le \Lambda, x_2 > \tilde{\varepsilon}(x_1)$$
: $\dot{x}_1 = ax_1$, $\dot{x}_2 = -mx_2$ $\dot{n} = x_1 - \lambda x_2$ (P_{21})

$$n \le \Lambda, x_2 < \tilde{\varepsilon}(x_1)$$
: $\dot{x}_1 = 0$, $\dot{x}_2 = -c$ $\dot{n} = 0$ (P_-)

$$n < \Lambda, x_2 = 0$$
: $\dot{x}_1 = ax_1, \quad \dot{x}_2 = 0, \quad \dot{n} = x_1$ (P_1)

$$n = \Lambda$$
, $x_2 \le \tilde{\varepsilon}(x_1)$: $\dot{x}_1 = 0$, $\dot{x}_2 = c$ $\dot{n} = 0$ (P_+)

$$ilde{arepsilon}(x_1) = arepsilon \lambda, \quad ext{если } x_1 \geq arepsilon \lambda, \ ilde{arepsilon}(x_1) = rac{1}{\lambda} arepsilon x_1, \quad ext{если } 0 < x_1 < arepsilon \lambda$$

Внутренняя структура

Внешняя структура

$$P_2$$
 — взаимодействие

$$s = (d_1, d_2)$$
 $\gamma = (1, 1)$

$$\gamma = (1,1)$$

$$P_{21}$$
 — развитие популяции жертвы эмиграция популяции хищника

$$s = (d_1, e_2)$$
 $\gamma = (1, 1)$

$$P_1$$
 — развитие популяции жертвы в отсутствие хищников

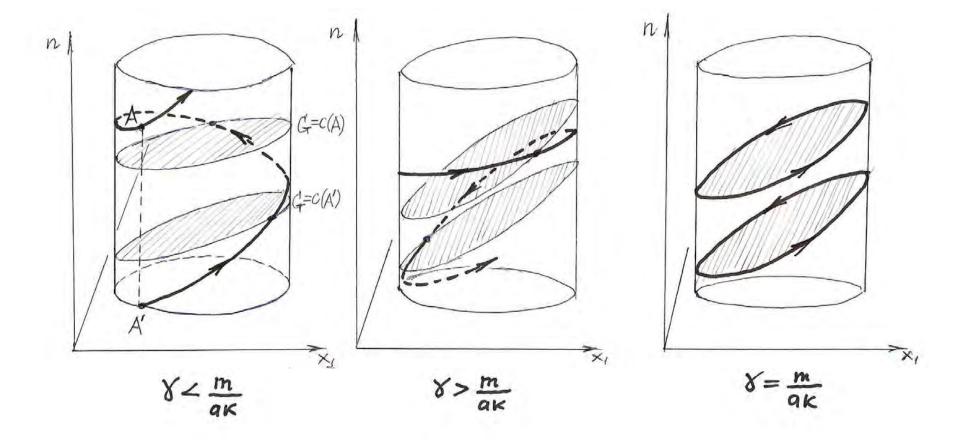
$$s = (d_1, 0)$$
 $\gamma = (1, 0)$

$$\gamma = (1,0)$$

$$P_+$$
 — колонизация

$$s = (d_1, c_1)$$
 $\gamma = (1, 1)$

$$\gamma = (1, 1)$$



Динамика популяций и структур

Теорема 1.
$$\lambda < \frac{m}{ak} \ \Rightarrow \ \forall M_0(x_{10},x_{20},n_0) \ \exists T(M_0)$$
 при $t > T(M_0)$
$$P_2$$

Теорема 2. $\lambda = \frac{m}{ak} \Rightarrow \forall M_0 \notin O_1 q \cup Eq \quad \exists T(M_0)$: при $t > T(M_0)$

$$P_2$$
 или P_2P_{21}

$$Eq = \{(x_1, x_2, n) : n > \varLambda, x_1 = \frac{m}{bk}, x_2 = \frac{a}{b}\}$$
 равновесия Вольтерра

$$O_1q = \{(x_1, x_2, n): n = \Lambda, x_1 - \lambda x_2 = 0, x_1 > \frac{m}{bk}, x_2 > \frac{a}{b}\}$$

устойчивые равновесия

Теорема 3.
$$\lambda > \frac{m}{ak} \Rightarrow \forall M_0 \in O_1 h$$

$$\lim_{t\to\infty} x_i(t) = \infty$$
 $i = 1,2$

$$O_1h = \{(x_1,x_2,n): n=\varLambda, x_1-\lambda x_2=0, x_2>\varepsilon\}$$
 луч скольжения

 $M_0 \notin O_1 h \implies$ периодический режим $P_2 P_{21}$ с выходом в режим P_1 при малых x_1, x_2

Экологический смысл

$$\lambda < \frac{m}{ak}$$
 —с некоторого момента времени миграция прекратится ареал привлекателен

$$\lambda = \frac{m}{ak}$$
 —периодические режимы $P_2 P_{21}$ (вторичная миграция) или вольтеровские режимы P_2

$$\lambda > \frac{m}{ak}$$
 — активная миграция с возможностью полного ухода ареал непривлекателен

$$\frac{1}{\lambda}$$
 —показатель пищевой привлекательности ареала для популяции хищника

• Модель с самолимитированием популяции жертвы:

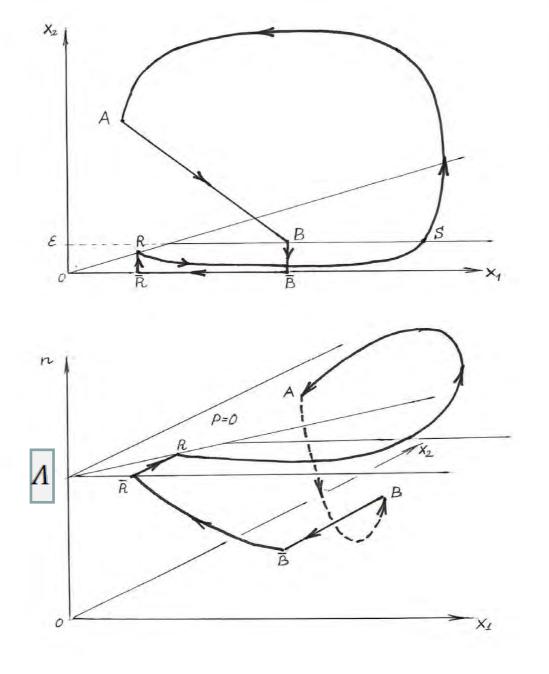
$$\dot{x}_1 = x_1(a - cx_1)$$

• Исследована возможность полной вторичной миграции. Найдены условия существования периодических режимов.

Теорема. $\lambda > \frac{m}{ak} \Rightarrow \;\;$ в режиме полной вторичной миграции существует периодический структурный режим

$$(P_1P_2P_{21})$$

полная миграция — выход в режим P_1



Выводы

В отличие от классической модели Вольтерра и основанных на ней моделях, предложенная модель позволяет исследовать устойчивость не только равновесных состояний, но и структурных траекторий. При этом системе Вольтерра соответствует одна из структур, устойчивая при некоторых условиях.

Подход к моделированию позволяет исследовать основные задачи теории метапопуляций: миграцию, колонизацию исчезновение, выживаемость.

Показана возможность колебания структур, описывающих взаимодействие и миграцию.

Из полученных результатов следует, что миграция может как стабилизировать режим взаимодействия, так и нарушить его устойчивость. В работах Ю.М.Свирежева этот результат получен в локальном случае с помощью методов линеаризации и малого параметра. Для предложенной модели все результаты носят глобальный характер как для структур, так и для равновесий.