# Моделирование динамики смешанных древесных сообществ в случае воздействия внешних факторов

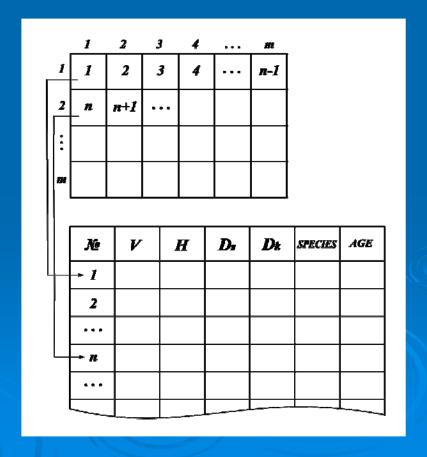
Колобов Алексей Николаевич

## <u>Цель работы</u>

Модельное описание и исследование динамики многовидовых, разновозрастных древесных сообществ, развивающихся в условиях межвидовой и внутривидовой конкуренции за свет.

## <u>Задачи</u>

- Построение эколого-физиологической модели роста дерева в условиях конкуренции за свет.
- Построение индивидуально-ориентированной модели пространственно-временной динамики древесных сообществ.
- Моделирование процессов сукцессии в смешанных древесных сообществах темнохвойных и светолюбивых видов.
- Построение сценариев пространственно-временной динамики древесных сообществ темнохвойных и светолюбивых видов под воздействием внешних факторов.

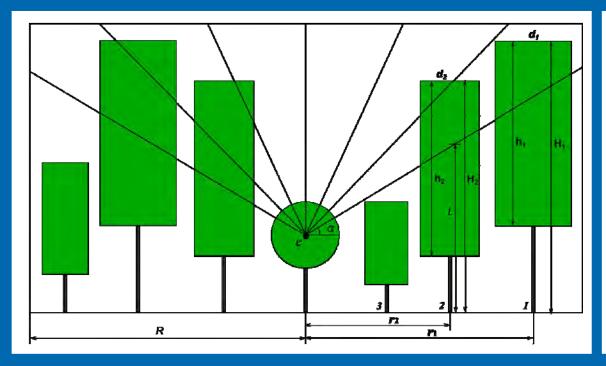

## Индивидуально-ориентированная модель динамики древостоя

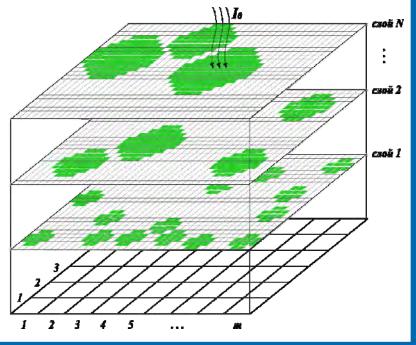
#### Пространственная структура моделируемого участка леса



Моделируемое пространство делится на ячейки по горизонтальной плоскости и слои по вертикали

Организация хранения и поиска информации содержимого ячеек координатной сетки моделируемого участка





# Структурная схема модели динамики древостоя



### Расчет светового режима

Рис. 1 Схема вычисления освещения дерева в сообществе Рис. 2 Схема вычисления вертикального освещения дерева в сообществе





Условие пересечения кроны световым лучом

$$(H_j - h_j) \le L_j \le H_j, \quad L_j = tg\alpha \cdot r_{i,j} + \left(H_i - \frac{h_i}{2}\right)$$

Н - высота дерева, h - длина кроны,

L - высота луча,  $\alpha$  - угол падения луча

$$Q_{i\alpha} = \sum_{s=1}^{n-1} \left[ \sum_{\substack{j_1=1\\j_1\neq i}}^{n} \sum_{\substack{j_2=2\\j_2\neq i}}^{n} \dots \sum_{\substack{j_s=j_{s-1}+1\\j_s\neq i}}^{n} \exp(-\sum_{r=1}^{s} k_{j_r i} V_{j_r i}) q_{j_1 \dots j_s i} \right] + q_{0i}$$

 $Q_{i\alpha}$  – доля солнечной радиации падающей на наружную поверхность кроны i-го дерева под разными углами  $\alpha$ 

 $q_{0i}$  - доля открытой части кроны i- го дерева

 $q_{j_1\dots j_s i}$  - доля затененной части кроны

 $k_j$  - коэффициент затухания j – го дерева

## Модель роста дерева в сообществе

#### Уравнения роста *i* – го дерева

$$\begin{cases}
\frac{dV_{i}}{dt} = \frac{1}{n} \sum_{l=1}^{n} \left( \frac{P_{im} \cdot b_{i} \cdot V_{i}^{2/3}}{p_{i}} \cdot \ln \left( \frac{P_{im} + a_{i} \cdot Q_{il}}{P_{im} + a_{i} \cdot Q_{ij} \cdot \exp(-p_{i}V_{i}^{d_{i}})} \right) \right) - c_{i}V_{i}H_{i} \\
\frac{dH_{i}}{dt} = (k_{i} + m_{i} \cdot H_{i}) \cdot \left( R(Q_{i}) - \frac{H_{i}}{H_{imax}} \right)
\end{cases}$$
(1)  $D_{i} = \sqrt{\frac{4V_{i}}{\pi H_{i}f(V_{i})}}$ 

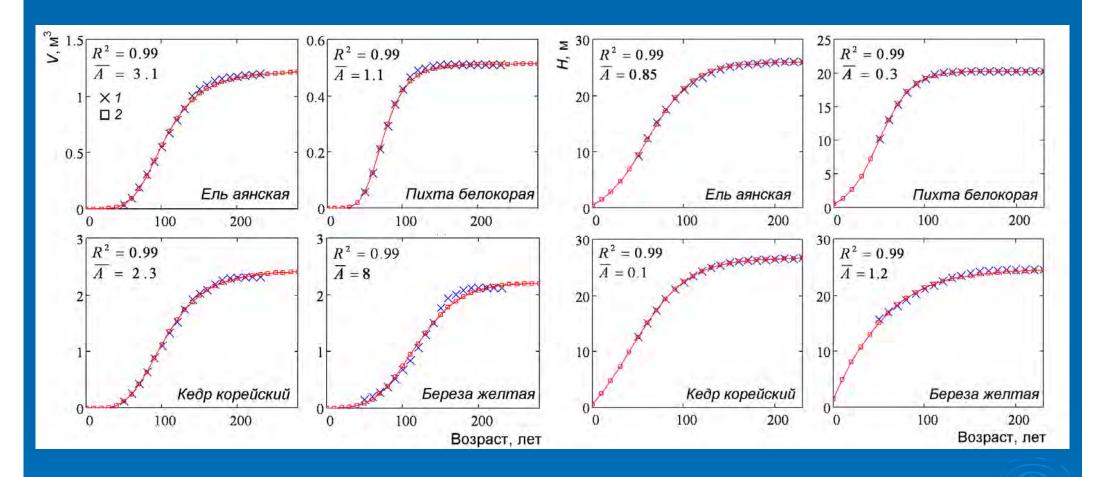
V - объем дерева, H - высота, D – диаметр,  $P_m$  - максимальная интенсивность фотосинтеза единицы площади листьев дерева, p - коэффициент самозатенения дерева, a - крутизна световой кривой, показывает зависимость фотосинтеза от интенсивности освещения, d – фрактальная размерность кроны, c – коэффициент пропорциональности расходов энергии на транспорт ассимилятов, b – параметр характеризующий приток энергии,  $H_{max}$  – максимальная высота дерева, k, m – видоспецифичные параметры роста высоты, Q - доля солнечной радиации при затенении окружающим древостоем ( $0 \le Q \le 1$ ), R(Q) – коэффициент конкуренции, зависящий от интенсивности света, f(V) – функция характеризующая, отклонение от идеального цилиндра (видовое число), n – количество лучей используемых для сканирования пространства вокруг рассматриваемого дерева.

#### Моделирование процессов отпада и возобновления

#### Условия отпада дерева

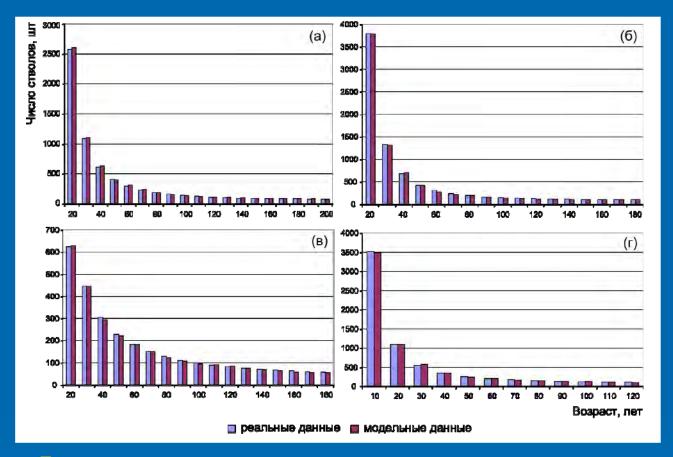
- 1) если возраст дерева достиг средней продолжительность жизни, вычисляется вероятность отмирания растения, возрастающая в процессе его старения
- 2)  $\frac{dV_i}{dt} < 0$  если расход энергии, необходимой для поддержания жизнедеятельности дерева превышает его доход
- 3)  $\frac{V_i(t)}{Vsi(t)} < n_i(t)$  если степень отставания роста дерева в условиях затенения от его потенциальных размеров превышает некоторый порог

V(t) — объем ствола дерева находящегося в условиях затенения Vs(t) — объем свободно растущего дерева при полном освещении n(t) — пороговая величина отставания в росте, t — возраст дерева


## Доля семян *j* - го вида от общего количества семян в каждой свободной ячейке моделируемого участка

$$N_{j} = \sum_{i=1}^{n_{j}} \frac{1}{r_{i,j}} / \sum_{j=1}^{m} \sum_{i=1}^{n_{j}} \frac{1}{r_{i,j}}, \quad r_{i,j} \le R$$
 (1)

R – максимальный радиус рассеивания семян


 $r_{i,j}$  — расстояние от ячейки до i - го дерева j - го вида способного к плодоношению  $n_j$  — количество деревьев j - го вида, m — количество видов

# Оценка параметров модели роста дерева по эмпирическим данным для некоторых видов деревьев



Графики роста объема и высоты для ели аянской, пихты белокорой, кедра корейского, березы желтой. Крестики – эмпирические данные, квадратики – модельные данные. Коэффициент детерминации составил 0,99, ошибка аппроксимации 0,8-8

# Оценка параметра отмирания в модели по фактическим данным изреживания одновидовых, одновозрастных древостоев



| ель    | $n_1(t) = \begin{cases} 1.19, t \le 47 \\ 0.927 \cdot e^{(0.0052 \cdot t)}, 47 < t \le 130 \\ 1.83, t > 130 \end{cases}$ |
|--------|--------------------------------------------------------------------------------------------------------------------------|
| пихта  | $n_2(t) = \begin{cases} 1.29, t \le 26 \\ 1.133 \cdot e^{(0.005 \cdot t)}, 26 < t \le 70 \\ 1.61, t > 70 \end{cases}$    |
| кедр   | $n_3(t) = \begin{cases} 1.2, t \le 46 \\ 0.91 \cdot e^{(0.006 \cdot t)}, 47 < t \le 110 \\ 1.77, t > 110 \end{cases}$    |
| береза | $n_4(t) = \begin{cases} 1.32, t \le 46\\ 1.1 \cdot e^{(0.0043 \cdot t)}, 46 < t \le 110\\ 1.77, t > 110 \end{cases}$     |

Динамика численности одновидовых, одновозрастных древостоев: а) ель, б) пихта, в) кедр, г) береза

n(t) — пороговое значение отставания роста дерева в условиях затенения

В результате были подобраны такие значения параметра,  $n(t) \ge V(t)/Vs(t)$  влияющего на интенсивность отмирания деревьев, при которых ряд полученных модельных значений, наилучшим образом аппроксимирует данные натурных наблюдений взятых из таблиц хода роста.

# Верификация модели по фактическим данным пробной площади разновозрастного древостоя

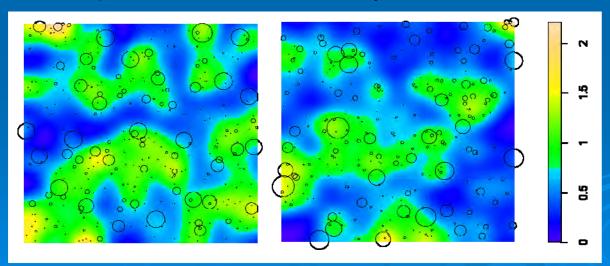
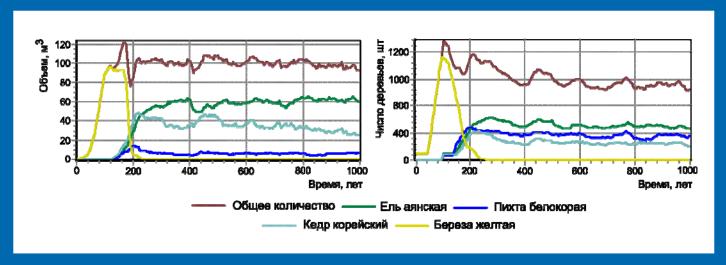
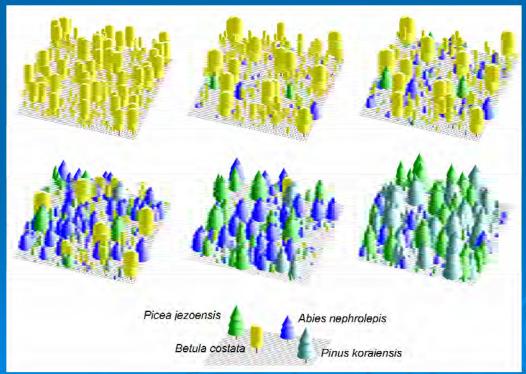


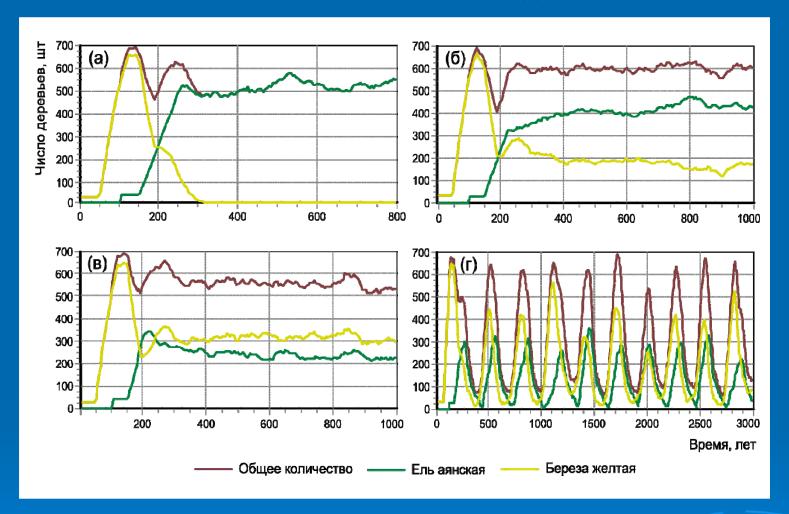
$$\chi^2_{\text{\tiny 3MN}} = 5.38 < \chi^2_{\text{\tiny KP}} = 14.057$$

для уровня статистической значимости  $P \le 0.05$ 

принимается нулевая гипотеза о том, что различия между двумя распределениями не являются статистически значимыми

Рис. 1 Распределение по ступеням толщины диаметров ствола реального и модельного участков



Рис. 2 Горизонтальная структура елово-пихтового древостоя (слева - модельный участок, справа - пробная площадь 20×20 м (EAO))

# Модельный сценарий динамики смешанного, разновозрастного древесного сообщества (ель, пихта, кедр, береза)





# Модельные сценарии динамики сообщества теневыносливого и светолюбивого видов в случае изъятия доли деревьев теневыносливого вида



а) естественное развитие сообщества без влияния внешних факторов; б) развитие сообщества, при ежегодном изъятии 4% деревьев ели от общего объема древесины начиная с максимального диаметра; в) при изъятии 9% деревьев ели от общего объема древесины начиная с максимального диаметра; г) при изъятии 0.0001% подроста ели от общего объема древесины.

#### Моделирование выборочных рубок

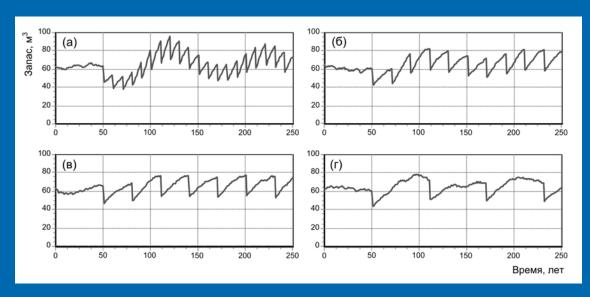



Рис. 1 Динамика запаса в елово-пихтовом древостое при разной периодичности рубок с интенсивностью 30%: a) 10 лет; б) 30; в) 40; г) 60

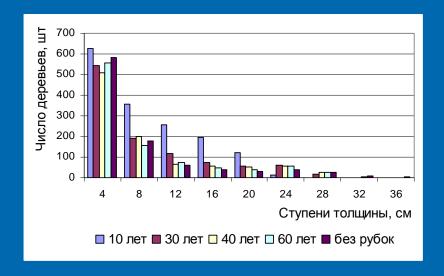



Рис. 2 Распределение по ступеням толщины диаметров при естественном развитии древостоя и после рубок

#### Характеристики различных режимов рубок

| Режим рубок | Средний объем<br>изъятия за одну<br>рубку | Общий объем изъятия за 200 лет, м <sup>3</sup> | Максимальный диаметр изъятых деревьев, см | Минимальный диаметр изъятых деревьев, см |
|-------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------|
| 10 лет, 30% | 22.8                                      | 456.8                                          | 24                                        | 16                                       |
| 30 лет, 30% | 22                                        | 131.8                                          | 28                                        | 20                                       |
| 40 лет, 30% | 21.7                                      | 108.7                                          | 29                                        | 22                                       |
| 60 лет, 30% | 19.7                                      | 59.2                                           | 32                                        | 22                                       |

## Выводы

- Анализ сценариев динамики смешанного древесного сообщества
  подтвердил базовое положение о том, что в долговременной перспективе
  при отсутствии внешних воздействий теневыносливые виды полностью
  вытесняет светолюбивые. Вместе с тем изъятие части взрослых деревьев
  темнохвойных пород приводит к возможности сосуществования видов
  неограниченно долго.
- В случае изъятия доли теневыносливого подроста в системе наблюдаются длиннопериодические колебания, в которых численное преобладание светолюбивых видов, сменяется преобладанием теневыносливых и наоборот. Такие условия могут возникать, например, при инвазиях насекомых-вредителей или при поедании молодых побегов копытными животными.
- Показана принципиальная возможность применения модели для анализа различных стратегий лесопользования с целью нахождения оптимального объема и периодичности рубок, в зависимости от поставленной цели хозяйствования.