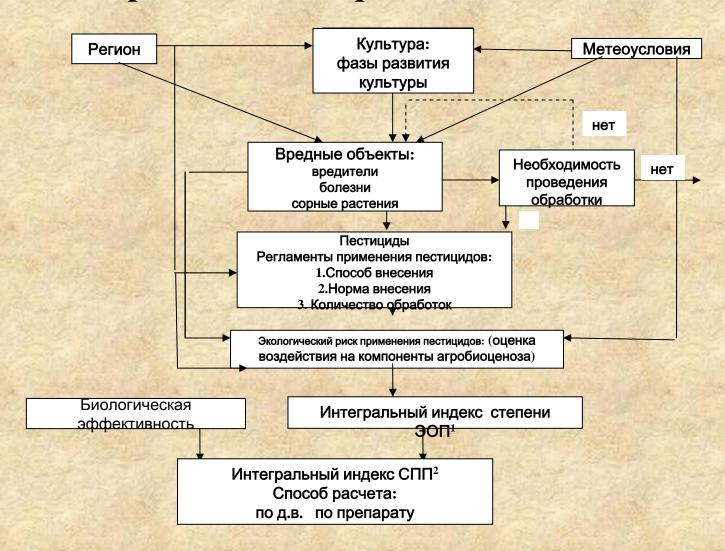
*Всероссийский НИИ защиты растений Россельхозакадемии (ВИЗР) #Санкт-Петербургский ГУ

СБАЛАНСИРОВАННЫЙ ПОДХОД К ИСПОЛЬЗОВАНИЮ ПЕСТИЦИДОВ НА ОСНОВЕ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ

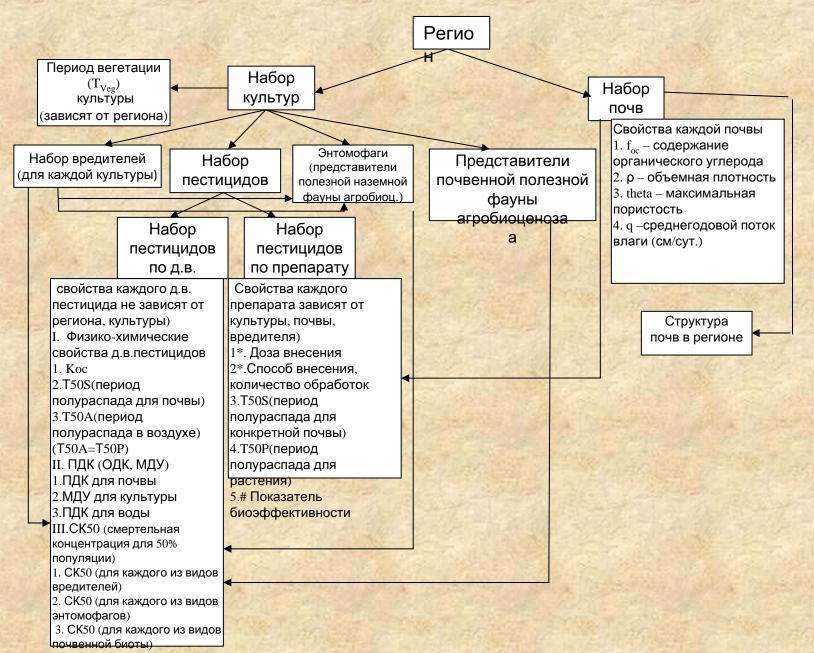
* #Семенова Н.Н.


*Сухорученко Г.И.

*Долженко О.В.

*#Зациорский А.С.

• Целью предлагаемой разработки является построение алгоритмов и создание компьютерной программы для решения задачи сбалансированного применения пестицидов.


Алгоритм определения интегрального показателя сбалансированности применения пестицидов

ЭОП1 – экологическая опасность пестицидов

СПП² - сбалансированность применения пестицидов

Структура базы данных

Обобщенная модель миграции и деградации пестицидов в почве

$$\begin{split} \frac{\partial C}{\partial t} + J_{WR} \frac{\partial C}{\partial x} + K_{D\alpha} C^{\alpha} &= 0; \\ J_{WR} &= \frac{J_W}{R}; R = 1 + \frac{K_S \rho}{\theta}; \\ K_S &= K_{oc} f_{oc} \end{split}$$

- •Кос распределительный коэффициент, нормированный по содержанию органического вещества лючве ();
- •foc содержание органического вещества в почве (в долях);

- •C концентрация пестицида в почве (мг/кг);
- •x глубина проникновения пестицида в почву; t время;
- •К_{D1} коэффициент, обратно пропорциональный периоду полураспада пестицида (α=1) (1/сут.);
- $K_{D\alpha}, K_{D1}$ относительные скорости разложения пестицида в нелинейном и линейном случаях;
- •Jw объемный поток влаги (см/сут.);
- •R безразмерный коэффициент, характеризующий замедление процесса миграции пестицида из-за процесса сорбции;
- •Кs распределительный коэффициент в линейной изотерме сорбцим 3 (/ $_{\Gamma}$);
- •ρ, θ объемная плотность и максимальная порозность почвы соответственно;
- а показатель неоднородности

Частные индексы нагрузки пестицидов на почву агробиоценоза

Индекс актуальной пестицидной нагрузки на почву IPA

Линейная модель

$$IPA = rac{1 - \exp(-K_{D1}T_{veg})}{K_{D1}T_{veg}R};$$
 Пестицидов в грунтовые воды IPG

Нелинейная модель

Почва

Индекс риска проникновения пестицидов в

Индекс потенциальной пестицидной нагрузки на почву IPP

Линейная модель

$$\max_{A} C(x, T_{veg})$$
 ; $\max_{A} C(x, T_{veg})$; $\sup_{A} IPG = (3\ln 2*\theta*R*K_D)^{-1}$ Нелинейная модель

$$IPA = \frac{S}{R} \frac{1 - (1 - \frac{(1 - \alpha)}{S})^{\frac{2 - \alpha}{1 - \alpha}}}{(2 - \alpha)} 10^{3};$$

$$IPP = \frac{Dozas}{PDK} \left(1 - \frac{(1 - \alpha)}{S}\right)^{\frac{1}{1 - \alpha}}$$

$$Dozas = rac{Doza}{
ho h} 10^{-3}$$
 мг / кг; $S = rac{Dozas^{1-lpha}}{T_{veg} K_{Dlpha}}$

Doza - количество вносимого пестицида (г/га)

Tveg — длина вегетационного периода (сут)

PDK - предельно допустимая концентрация (мг/кг)

Lmax - максимальная глубина проникновения пестицида (см)

h - глубина заделки препарата (см),

Области существования сбалансированных по выбранному критерию норм расхода пестицидов

Номера соответствуют следующим инсектицидам:1.Диазинон 2.Хлорпирифос 3.Фипронил 4. Тиаметоксам 5. Имидаклоприд 2. Минимальный и максимальный риск проникновения пестицидов в грунтовые воды для почв:

 R_{min} : $f_{oc}=3\%$; $\rho=1,5$ Γ CM-3; ln=20CM; $J_{W}=0,14$ CM/CYT; $\theta=0,5$ CM³/CM³; R_{max} : $f_{oc}=0.5\%$; $\rho=1.2$ Γ CM-3; ln=40CM; $J_{W}=0.28$ CM/CYT; $\theta=0.2$ CM³/CM³;

3. Показатель начальной токсичности пестицида: Ise

Расчет норм расхода инсектицидов диазинон и хлорпирифос под посевами кукурузы и картофеля при борьбе с проволочником (кг/га)

	Типы почв									
Пести-	Подзолистая		Дерново- подзолистая		Серая лесная легкоглини- стая		Чернозем вы- щелоченный			
	песчаная		среднесугли-				тяжелосугли- нистый			
	Куку-	Карто-	Куку-	Карто-	Куку-	Карто-	Куку-	Карто-		
	руза	фель	руза	фель	руза	фель	руза	фель		
Диази-	1.60	1.74	2.64	2.75	2.8	2.9	4.48	4.66		
нон	1.00	1./4	$(1.25)^*$	(3)		(4)	(3)	(5)		
Хлорпи-	0.65	0.65 0.69	0.87	0.9	0.7	0.72	1.15	1.2		
рифос			(0.75)	(1.25)	0.7	0.12	(1.25)	(3)		

^{* -} в скобках указана рекомендованная доза (Андреев, 1982).

Обобщенная модель воздействия пестицида на энтомофагов

$$\begin{cases} \frac{dB}{dt} = \left(r - \frac{1}{\tau} \ln\left(1 + \left(\frac{C(t)}{CK_{50}}\right)\right)\right)B, \\ \frac{dC}{dt} = -K_DC, \\ B(0) = B_0, C(0) = C_0 \end{cases}$$

r – относительная скорость их роста в естественных условиях (1/сут.);

Таблица1. Время восстановления численности энтомофагов в сутках при умеренной естественной скорости увеличения их плотности, r=0.035 (1/сут.)

K _{SAF}	0.5	0.3	0.2	0.1	0.02
1	24	>30	-275-0		
3	8	13	19	>30	>30
10	1	3	5	8	13

Таблица2. Время восстановления численности энтомофагов в сутках при медленной естественной скорости увеличения их плотности, r=0.01 (1/сут.)

K _{SAF} K _D	0.5	0.3	0.2	0.1	0.02
1	>30	>30			第二分型大型
3	29	>30	>30	>30	- 424
10	8	15	23	>30	

Частные индексы нагрузки пестицидов на энтомофауну агробиоценоза (Semenova et al, 2003)

 $ln(B_0/B) \approx t/(\tau K_{SAF})$ при $K_{SAF} > 1$ и $ln(B_0/B) \approx (t/\tau)(1/K_{SAF} + ln K_{SAF})$ при $K_{SAF} < 1$.

где B - биомасса или число особей на единичной площади агробиоценоза (B_0 - в момент обработки);

 $\frac{CK_{50}}{C_0} = K_{SAF}$ – называется коэффициентом безопасности и служит критерием для классификации инсектицидов по их начальному воздействию;

au — период экспозиции (сут.), в течение которого гибнет 50% популяции энтомофагов под воздействием дозы CK_{50} ; — производственная концентрация пестицида

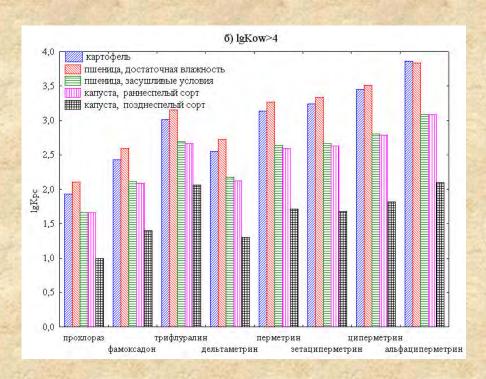
Индекс нагрузки пестицидов на растение

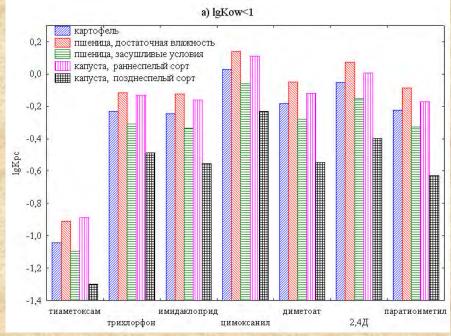
$$K_{pc} = \frac{k_{cm}^{0} \exp(-0, 23k_{S}M_{V})K_{cw}}{(1 + r_{cu}\rho_{wax}\rho_{dep}^{-1}K_{cw})}$$

- где ρ_{wax} поверхностная плотность эпикутикулярных восков (мкг/см²);
- ρ_{dep} поверхностная плотность внешнего отложения пестицида, (мкг/см²);
- K_{pc} относительная скорость переноса пестицидов через кутикулу;
- k_{cm}^0 , k_S коэффициенты селективности и мобильности;
- M_V молярный объем пестицида;
- K_{cw} параметр, определяемый по октаноловому числу

Классификация пестицидов по скорости проникновения в листья растений через кутикулу в зависимости от октанолового числа K_{ow}

1.
$$\lg K_{ow} > 4$$
;


$$1 < lgK_{pc} < 4;$$


2.
$$\lg K_{ow} < 1$$
;

$$-1,4 < lgK_{pc} < 0,2;$$

3.
$$1 < lgK_{ow} < 4;$$

$$0.2 < lgK_{pc} < 2.4;$$

Метод анализа иерархий (МАИ) для оценки экологической опасности пестицидов

выбора наиболее

группы пестицидов

Рис. 1. Иерархия МАИ для безопасного пестицида или

Рис. 2. Модифицированная иерархия с учетом мнения экспертов

Сравнение критериев экологической опасности пестицидов относительно интегральной оценки (приоритет защита почвы)

	ISOIL	IPLANT	IENT(over/under soil)	ITOX
ISOIL		3	2	4
IPLANT	0.33	1	0.5	2
IENT(over/un der soil)	1	2	1	2
ITOX	0.25	0.5	0.5	1

Ранжирование инсектицидов различных химических классов по степени их экологической опасности

Инсектицид		Пром	ежуточн	ые индексы в б коэффици	Интеграл	Интегральный индекс в баллах			
	Препарат			Приорите	С учетом приоритетов. в зависимости от обработки		ти Без учета приоритетов		
<mark>Действ</mark> ующее вещество		-влияние продуг абиоти-чески ^{ОТ}	продукции от	Сохранение полезных членистоногих		Токсическая нагрузка	Внесение в почву	Наземная обработка	
			загрязне- ния	поч-венная биота	наземная энтомо-фауна				
Диазинон	Базудин Г(100г/кг)	6.94	7.25	6.94	7.37	5.41	6.64	6.74	7.65
Хлорпирифос	Дурсбан Г(100г/кг)	5.80	5.60	5.87	6.37	5.61	5.72	5.85	6.30
	Ду Дурсбан КЭ (480г/л)	6.76	5.88	6.76	5.99	5.84	6.31	6.12	6.75
Имидаклоприд	Конфидор Экстра ВДГ (700г/кг)	7.12	6.74	7.12	6.2	5.96	6.74	6.51	7.20
	Конфидор ВРК (200 г/л)	7.64	7.78	7.64	7.14	6.49	7.39	7.26	8.10
Имидаклоприд +пенцикурон	Престиж КС (140+150г/л)	6.49	7.45	6.49	7.52	6.52	6.74	7.00	7.65
Тиаметоксам	Актара ВДГ (250г/кг)	8.00	8.07	8.00	7.81	6.74	7.70	7.66	8.55
20 30 30 30 30 30 30	Круйзер КС (350г/л)	6.94	6.93	6.94	7.05	7.08	6.97	7.00	7.20
Фипронил	Регент ВДГ (700г/кг)	7.43	6.86	7.43	7.00	7.29	7.25	7.15	7.65
Тефлутрин	Форс (15г/кг)	6.89	7.08	6.89	7.50	7.38	7.06	7.21	7.65
Дельтаметрин	Децис Профи ВДГ (250г/кг)	6.36	6.25	6.36	6.01	7.69	6.67	6.58	6.75
Хлорантранилипрол	Кораген КС (200г/л)	8.36	8.36	8.36	8.48	8.00	8.27	8.30	9.00

Шкала опасности: $8 \le \Sigma$ — не опасен; $7 \le \Sigma < 8$ — мало опасен; $6 \le \Sigma < 7$ — средне опасен; $\Sigma < 6$ - опасен.

Ранжировка наиболее применяемых групп пестицидов по степени экологической опасности для четырех сценариев оценки

	CIAT	VOLUALA		
Сценарий оценки	$VC=(\lambda-n)/(n-1)$	OC=NC/CN	λ	
Равновесный	0	0	4	
Охрана почв	0,11	0,12	4, 33	
Сан.гигиен.	0,09	0,1	4,27	
Защита энтм.	0,08	0,09	4,24	

П — ПИРЕТРОИДЫ; ФОС — ОРГАНОФОСФАТЫ; ФП — ФЕНИЛПИРАЗОЛЫ; Н - НЕОНИКОТИНОИДЫ

1) Равновесный сценарий: 2) Санитарно-

гигиенический

 $H < \Phi \Pi < \Phi O C < \Pi$ $H < \Phi O C < \Phi \Pi < \Pi$

 2) Охрана почв
 4) Защита энтомофауны

 ФП<П<ФОС<Н</td>
 H<ФП<ФОС<П</td>

ИС- индекс согласованности (ИС<0,1); ОС — отношение согласованности; СИ — случайный индекс (при n=3

Выводы

- I. Алгоритм, заложенный в программу PESTOPTIMA, позволяет осуществить синтез качественных (экспертный подход) и количественных (детерминированно-статистический подход) оценок, необходимых при определении сбалансированного применения пестицидов.
- II. Интегрированная информационная модель локальной оценки экологической опасности пестицидов в агробиоценозах сельскохозяйственных культур PESTOPTIMA может быть использована 1.для проведения зональной классификации ассортимента пестицидов;
- 2. для определения, сбалансированных по показателям экологической безопасности и биологической эффективности.
- 3. для дифференциации норм расхода пестицидов в точном

Литература

- Саати Т. Принятие решений. Метод анализа иерархий. Москва. Радио и связь. 1993. -278с.
- Novozhilov K.V., Petrova T.M., Semenova N.N., Solomina T.V. Modeling of foliar uptake and degradation of pesticides using crop growth model.
- 1.Mathematical model description// Arch. Phytopathol. Pflanzenschutz.. 1995. Bd.30, №2, P.165-181
- Семенова Н.Н.Разработка индексов экологической опасности применения пестицидов для почв агроценозов // Агро XXI. 2007. №4-6, С.29-34.
- Семенова Н.Н., Новожилов К.В., Сухорученко Г.И. Оценка локального риска применения пестицидов с использованием метода анализа иерархий// Вестник защиты растений. 2012. № 3, С. 3-9.
- Семенова Н.Н., Новожилов К.В., Петрова Т.М., Терлеев В.В.
- Детерминированные модели поведения пестицидов в почве.
- Методология построения, структура, принципы, использования.- СПб.-
- Пушкин: ВИЗР РАСХН, 1999.- 92с
- Semenova N.N., Novozhilov K.V., Petrova T.M. Some approaches to the simulation modeling of side effects of pesticides in soil// Crop Protection Conference: Conf. rep. 01, (St.Peterburg Pushkin, may 28-30, 2002); Swedish Un. of Agr. Sciences, Department of ecology and crop production science.-