
S_{S}

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ НИТРИФИКАЦИИ И ОКИСЛЕНИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ В СИСТЕМЕ БИОЛОГИЧЕСКОЙ ОЧИСТКИ

Смирнов Н. В.

ИПМИ КарНЦ РАН

Схема аэротенка

- место вхождения сточной воды в аэротенк
- место вхождения иловой смеси в аэротенк
- направление движения иловой смеси
- ---- границы компартментов

Концентрации:

 S_s - легко биоразложимых органических веществ,

 S_{MH} - аммония азота,

 X_H - гетеротрофов,

 X_A - автотрофов,

 S_o - кислорода.

Экспериментальные данные: S_S , $S_{N\!H}$, S_O , $X = X_A + X_H$.

Расчет концентраций в местах вхождения сточной воды

$$S_{S,i+1}^{in} = \frac{S_S^* \cdot V_{cv,i} + S_{S,i} \cdot V_i}{V_{cv,i} + V_i}, \quad S_{NH,i+1}^{in} = \frac{S_{NH}^* \cdot V_{cv,i} + S_{NH,i} \cdot V_i}{V_{cv,i} + V_i},$$

$$X_{H,i+1}^{in} = \frac{X_{H,i} \cdot V_i}{V_{cv,i} + V_i}, \quad X_{A,i+1}^{in} = \frac{X_{A,i} \cdot V_i}{V_{cv,i} + V_i}.$$

 $V_{cv,i}$ — объём сточной воды, входящей в i -ый участок

 V_i – объём i -ого участка

$$S^*$$
, X^* – концентрации в сточной воде,

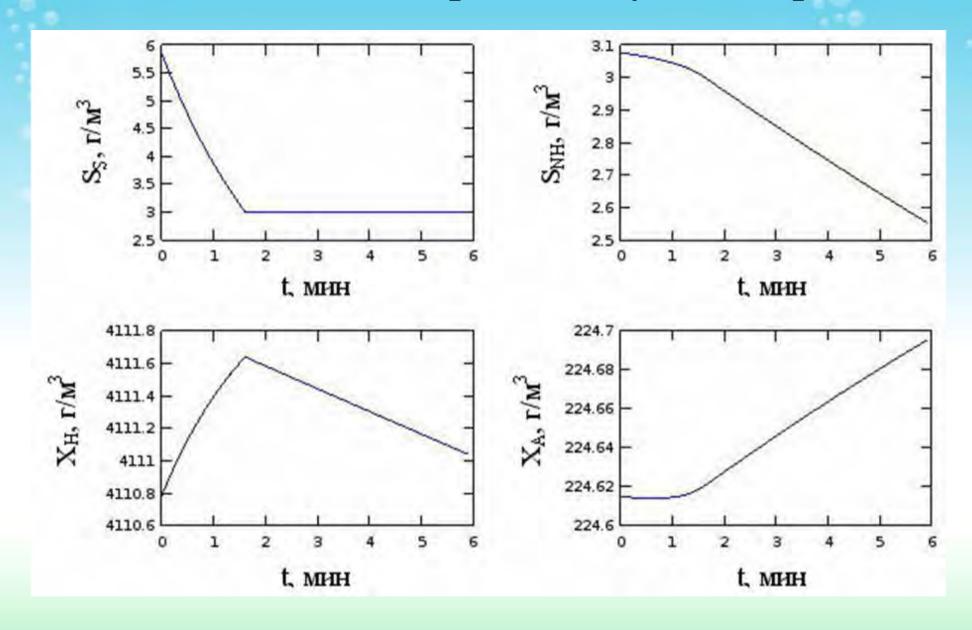
$$S_{j,i},\ X_{j,i}$$
 – концентрации на выходе $(i-1)$ -ого субкомпартмента,

$$S^{in}_{j,i}$$
, $X^{in}_{j,i}$ – концентрации на входе в i -ый субкомпартмент.

Математическая модель процесса биоочистки

$$f(x,p) = \frac{x}{x+p}$$
 - трофическая функция Моно

$$f_1(\mathbf{S}_S) = \frac{1}{1 + e^{10^6 \left(\frac{c+\delta}{\mathbf{S}_S} - 1\right)}},$$
 - пороговые функции. $f_2(\mathbf{S}_S, \mathbf{S}_{NH}, \mathbf{K}_{\alpha}) = \frac{\mathbf{S}_{NH}/(\mathbf{S}_S - c)}{\mathbf{K}_{\alpha} + \mathbf{S}_{NH}/(\mathbf{S}_S - c)}$


$$\dot{S}_{S} = Q(S_{S}^{in} - S_{S}) - \frac{\mu_{H}}{Y_{H}} f(S_{S}, K_{S}) f(S_{O}, K_{O,H}) \frac{1}{1 + e^{10^{6} (\frac{c + \delta}{S_{S}} - 1)}} X_{H}, \tag{1}$$

$$\dot{S}_{\mathit{N\!H}} = Q(S_{\mathit{N\!H}}^{\mathit{in}} - S_{\mathit{N\!H}}) - \frac{\mu_{\mathit{A}}}{Y_{\mathit{A}}} f(S_{\mathit{N\!H}}, K_{\mathit{N\!H}}) f(S_{\mathit{O}}, K_{\mathit{O},\mathit{A}}) \frac{S_{\mathit{N\!H}} / (S_{\mathit{S}} - c)}{K_{\alpha} + S_{\mathit{N\!H}} / (S_{\mathit{S}} - c)} X_{\mathit{A}}, \tag{2}$$

$$\dot{X}_{H} = Q(X_{H}^{in} - X_{H}) + \left(\mu_{H} f(S_{S}, K_{S}) f(S_{O}, K_{O,H}) \frac{1}{1 + e^{10^{6} (\frac{C + \delta}{S_{S}} - 1)}} - b_{H}\right) X_{H}, \tag{3}$$

$$\dot{X}_{A} = Q(X_{A}^{in} - X_{A}) + \left(\mu_{A} f(S_{NH}, K_{NH}) f(S_{O}, K_{O,A}) \frac{S_{NH}/(S_{S} - c)}{K_{\alpha} + S_{NH}/(S_{S} - c)} - b_{A}\right) X_{A}, \quad (4)$$

Динамика концентраций в субкомпартменте

$$\dot{S}_{S} = \frac{1}{1 + e^{10^{6} (\frac{c+\delta}{S_{S}} - 1)}} X_{H}, \qquad (5)$$

$$\dot{X}_{H} = \beta \frac{V_{cv}}{V_{il}} X_{H}. \tag{6}$$

$$V_{cv}$$
 – расход сточной воды

$$V_{il}$$
 – расход активного ила

$$eta$$
 — скорость роста гетеротрофов

Параметрическая идентификация

$$P^{0} = (p_{1}^{0}, ..., p_{n_{p}}^{0})$$
, n_{p} - количество параметров.

Критерий оптимальности:

$$J = \sum_{i=1}^{n_y} sc_i^2 (y_i - y_i^m)^T (y_i - y_i^m) \ , \\ SC_i - \text{весовой коэффициент,} \\ y_i - \text{экспериментальные данные,} \\ y_i^m - \text{модельные данные,} \\ n_y - \text{количество измеряемых концентраций.}$$

Исследование чувствительности модели

$$s_{ij} = sc_i \frac{y_i^m(P^0 + \delta P_j) - y_i^m(P^0)}{\delta p_j}$$
 - функции чувствительности

$$\delta_j^{msqr} = \sqrt{\frac{1}{n_y} \sum_{i=1}^n s_{ij}^2}$$

 $\delta_j^{msqr} = \sqrt{\frac{1}{n_y} \sum_{i=1}^n s_{ij}^2}$ - мера чувствительности¹

Таблица мер чувствительности

Параметр	C_1	C_2	c_{32}	C_4	C_5
Y_H	0.49	0.25	7		-
Y_A	3.06	3.72	0.97	2.03	0.01
μ_H	52.53	38.67		2	-
μ_A	936.02	1888.1	782.85	20452.00	2341.40
b_{H}	9.59	23.39	-	(E)	-
\mathbf{b}_{A}	4.80	21.90	2.78	2.93	0.80
K_S	0.00	0.00	-	-	-
K_{NH}	0.11	0.25	0.06	0.05	0.00
$K_{O,H}$	0.06	0.05	10-20	-	-
$K_{O,A}$	0.08	0.26	0.06	0.03	0.00
K_{α}	0.01	0.01	0.00	0.00	0.00
β	-	-	15.67	26.98	10.781

¹ Brun R. et al. Practical identifiability of ASM2d parameters—systematic selection and tuning of parameter subsets. 2002.

Исследование чувствительности модели

$$S = \{s_{ij}\}_{\substack{i=1,\ldots,n_y \ j=1,\ldots,n_p}}^{i=1,\ldots,n_y}$$

 $S = \{s_{ij}\}_{j=1,\ldots,n_p}^{i=1,\ldots,n_y}$ - Матрица чувствительности

$$\gamma_k = \frac{1}{\min_{\|\beta\|=1}\|\tilde{S}_k\beta\|} = \frac{1}{\sqrt{\tilde{\lambda}_k}}$$
 - Индекс коллинеарности

$$\widetilde{S} = \left\{ \! s_{ij} \! \right\}$$
 - нормированная матрица, $\left. \widetilde{s}_{ij} \right. = \frac{s_{ij}}{\left\| s_{ij} \right\|}$.

 \widetilde{S}_k^T - подматрица \widetilde{S} содержащая колонки, соответствующие подмножеству параметров

$$\widetilde{\lambda}_k$$
 - наименьшее собственное число матрицы $\widetilde{S}_k^T\widetilde{S}_k$

$$ho_k = det(S_k^T S_k)^{1/2k} = \left(\prod_{j=1}^k \lambda_j\right)^{1/2k}$$
 - Мера детерминанта

Компартмент	Параметры	γ_k	ρ_k
C_1	μ_A , b_H	1.11	132.74
C_2	μ_A , b_H	1.08	295.59
c_{32}	μ_A, β	1.00	156.63
C_4	μ_A, β	1.00	1050.50
C_5	μ_A, β	1.00	224.69

Параметрическая идентификация

$$(S^T S)|_{P^0} \Delta P = S^T e_i|_{P^0}$$
, $\Delta P = P - P^0$, $e_i = y_i - y_i^m$

Параметр	единицы измерения	C_1	C_2	c_{32}	C_4	C_5
Y_H	г биомассы (г БПКполн)	0.75	0.75		1 - X - 1	- (2)
Y_A	г биомассы · (г аммония азота) ⁻¹	0.17	0.28	0.28	0.07	0.28
μ_H	${ m cyr}^{-1}$	10.00	7.00	-	-	-
μ_A	cyr^{-1}	0.80	0.80	0.66	0.01	0.001
b_H	cyr^{-1}	0.05	0.05	-	-	-
b_A	${ m cyr}^{-1}$	0.05	0.05	0.05	0.09	0.06
$egin{array}{c} b_A \ K_S \end{array}$	Γ БП K полн \cdot м $^{-3}$	200.00	40.00	12	10.0	-
K_{NH}	Γ аммония азота · M^{-3}	1.00	0.70	1.00	0.30	1.00
$K_{O,H}$	$_{\Gamma} \mathrm{O}_{2} \cdot \mathrm{m}^{-3}$	0.20	0.01	-	-	-
$K_{O,A}$	$_{\Gamma} \mathrm{O}_{2} \cdot \mathrm{m}^{-3}$	0.40	0.40	1.50	0.40	1.50
K_{α}	г аммония азота (г БПКполн)	5.00	5.00	5.00	5.00	5.00
β	cyr^{-1}	7-		20,306	4,562	-24,520

¹ Chai Q. Modeling, Estimation, and Control of Biological Wastewater Treatment Plants. Doctoral Theses at NTNU 2008:108 at HiT, Porsgrunn. Telemark University College, 2008.

	S_{NH} (г аммония азота·м ⁻³)				
C_i	Экп. данные	MHK	Уточнение		
C_1	2.750	2.748	2.749		
C_2	3.50	3.501	3.500		
C_3	2.750	3.192	2.722		
C_4	2.250	2.444	2.249		
C_5	2.250	2.249	2.249		

	$X(\Gamma \text{ биомассы·м}^{-3})$				
C_i	Экп. данные	MHK	Уточнение		
C_1	3300.000	3273.000	3273.000		
C_2	2635.000	2631.500	2631.500		
C_3	3430.000	3072.4	3081.100		
C_4	3720.000	3843.600	3839.000		
C_5	2760.000	2736.500	2744.800		

Введение управления

$$\dot{S}_{O} = Q(S_{O}^{in} - S_{O}) + u - \omega - \frac{1 - Y_{H}}{Y_{H}} \mu_{H} f(S_{S}, K_{S}) f(S_{O}, K_{O,H}) \frac{1}{10^{i} (\frac{c + \delta}{S_{i}} - 1)} X_{H} - \frac{4.57 - Y_{A}}{Y_{A}} \mu_{A} f(S_{NH}, K_{NH}) f(S_{O}, K_{O,A}) \frac{S_{NH} / (S_{S} - c)}{K_{\alpha} + S_{NH} / (S_{S} - c)} X_{A},$$
(7)

$$\dot{S}_{O} = Q(S_{O}^{in} - S_{O}) + u - \omega - \beta \beta_{Y} \frac{V_{ov}}{V_{il}} X_{H} - \frac{4.57 - Y_{A}}{Y_{A}} \mu_{A} f(S_{NH}, K_{NH}) f(S_{O}, K_{O,A}) \frac{S_{NH}/(S_{S} - c)}{K_{\alpha} + S_{NH}/(S_{S} - c)} X_{A}.$$
(8)

u - расход подаваемого кислорода,

объёмная скорость выхода кислорода в атмосферу,

 β_{Y} - коэффициент, характеризующий количество необходимого кислорода для окисления гетеротрофами веществ, не являющихся S_{χ} .

Выводы

- Предложена математическая модель процессов нитрификации и окисления легко биоразложимой органики.
- С помощью методов теории чувствительности найдены характеристики идентифицируемости модели, определено подмножество идентифицируемых наиболее точно параметров и уточнены значения параметров в каждом компартменте.
- Предложено введение управления динамикой концентрации кислорода с целью минимизации затрат на подачу кислорода при поддержании выходных концентраций субстратов в допустимых пределах.

Спасибо за внимание!