МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДИНАМИКИ ЧИСЛЕННОСТИ САЙГАКОВ

Юрезанская Ю.С. ¹

¹ ВЦ РАН, Москва, Россия

Аннотация: представлена аналитическая модель сайгаки – двудольные травы и полукустарники – злаки. Модель предназначена для описания влияния корма различного качества на динамику численности сайгаков. Приведены результаты расчётов за период 10 лет.

1. Введение

В настоящее время основные места обитания сайгаков в России отличаются низким кормовым качеством растительного покрова, и даже большой общий запас растительной массы не обеспечивает полноценного питания животных, идет речь о низкой кормовой ёмкости имеющихся пастбищ и об отсутствии условий для роста численности поголовья (Абатуров, 2007). В современном питании сайгаков преобладают малопитательные однодольные растения (злаки, осока) (Абатуров, 2008). Более предпочитаемые сайгаками двудольные растения занимают подчинённое положение. В (Абатуров, 2007) делается предположение, что такая ситуация сложилась под влиянием прекращения выпаса крупного скота и ежегодных степных пожаров; также выдвигается гипотеза о том, что низкопитательный растительный покров более губителен для сайгаков, чем браконьерство и тяжелые климатические условия.

1. Описание модели

Взяв за основу нелинейную модель Лотки—Вольтера, автор предлагает следующую линейную модель. Предложена неавтономная система трёх дифференциальных уравнений, которая описывает динамику численности сайгаков S, двудольных трав и полукустарников DV, а также злаков ZL.

$$\begin{cases} \frac{dDV}{dt} = C_{DVR}DV - C_{DVM}DV - C_{DVD}S, \\ \frac{dZL}{dt} = C_{ZLR}ZL - C_{ZLM}ZL - C_{ZLD}S, \\ \frac{dS}{dt} = C_{SR}S - C_{SM}S. \end{cases}$$

$$(1)$$

Здесь $C_{\it DVR}$, $C_{\it DVM}$, $C_{\it DVD}$ — коэффициенты прироста, естественного отмирания и отчуждения двудольных травянистых растений и полукустарников; под отчуждением понимается поедание растительности сайгаками. По аналогии определяются коэффициенты для злаков и сайгаков. Данная система уравнений имеет простое аналитическое решение:

$$S(t) = C_{1}e^{Kt}, K = C_{SR} - C_{SM},$$

$$ZL(t) = A_{ZL}e^{K_{2}^{ZL}t} + \frac{K_{3}^{ZL}}{K_{2}^{ZL} - K}e^{Kt}, K_{2}^{ZL} = C_{ZLR} - C_{ZLM}, K_{3}^{ZL} = C_{1}C_{ZLD},$$

$$DV(t) = A_{DV}e^{K_{2}^{DV}t} + \frac{K_{3}^{DV}}{K_{2}^{DV} - K}e^{Kt}, K_{2}^{DV} = C_{DVR} - C_{DVM}, K_{3}^{DV} = C_{1}C_{DVD}.$$

Здесь A_{ZL} , A_{DV} , C_I являются константами интегрирования и подбираются, исходя из начальных условий. Функция влияния качества корма на динамику численности сайгака пока не вставлена в модель, но её планируется вставить. Для достижения связи с биологической

информацией величины A_{ZL} , и A_{DV} подобрались так, чтобы биомасса злаков (мало питательных) превышала биомассу двудольных (более питательных).

Результаты моделирования, рассчитанные по этим формулам, представлены за период 10 лет, при этом постоянные коэффициенты системы уравнений 1 принимают различные значения в зависимости от времени года. Расчет начинается с января, начальное число особей C_{I} =1000. Коэффициенты смертности сайгаков C_{SM} брались согласно данным динамики смертности сайгака по месяцам в процентах от всего отхода за год (Близнюк, 2009), что демонстрирует рисунок 1. Коэффициенты прироста C_{SR} взяты также из этого источника: зимой, летом и осенью C_{SR} =0, весной C_{SR} =1.02 (так как сайгаки размножаются только весной); введено дополнительное условие: если нет никакого корма, то C_{SR} =0.

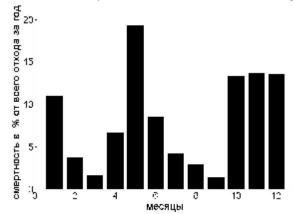


Рисунок 1 – Коэффициенты смертности сайгака

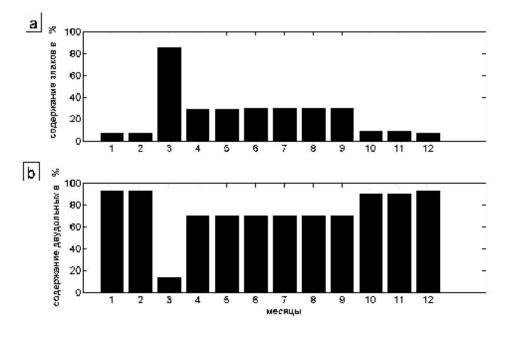


Рисунок 2

Коэффициенты отчуждения растительности сайгаками $C_{\it DVD}$ и $C_{\it ZLD}$ в разные месяцы также брались согласно натурным данным (Близнюк, 2009), где представлены значения групп кормов в питании сайгака по периодам года в процентах от общего объема корма. Данные для злаков брались из литературы, содержание двудольных вычислялось как оставшаяся часть от 100%. При этом $C_{\it DVD} = b f(t)$, $C_{\it ZLD} = b g(t)$, где f(t) и g(t) — функции,

построенные на основе натурных данных, а b — параметр моделирования, отвечающий за долю, потреблённой сайгаками растительности, от ее общей биомассы. Также параметрами моделирования являются коэффициенты прироста и отмирания злаков и двудольных в системе дифференциальных уравнений 1. Параметры моделирования подбираются таким образом, чтобы достигались реальные динамические режимы, чтобы не было отрицательных значений корма и животных, а также их аномально высоких значений. Например, считается, что площадь, занимаемая сайгаками, не может содержать более 5000 особей, и сайгаки не могут исчезнуть полностью, при любых тяжёлых условиях их численность не падает ниже 2% от исходного числа.

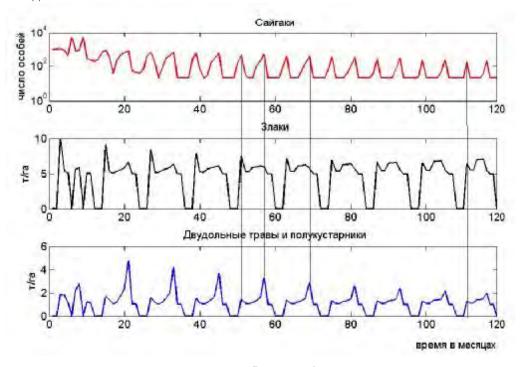


Рисунок 3

Литература

Абатуров Б.Д. Популяция сайгака в России и проблемы ее сохранения. // Вестник РАН. - 2007. - № 77(9). - C.785-793.

Абатуров Б.Д., Ларионов К.О., Джапова Р.Р., Колесников М.П. Качество кормов и обеспеченность сайгаков (saiga tatarica) пищей в условиях восстановительной смены растительности на Чёрных землях Калмыкии // Зоологический журнал. - 2008. - № 87(9). - С.1524 -1530.

Близнюк А.И. Сайгак калмыцкой популяции. - Элиста: НПП <Джангар>, 2009. - 544 с.